Plumbogummite is a rare secondary lead phosphate mineral, belonging to the alunite supergroup of minerals, crandallite subgroup.[2] Some other members of this subgroup are:

  • Crandallite, CaAl3(PO4)2(OH)5·H2O, where calcium replaces lead
  • Goyazite, SrAl3(PO4)2(OH)5·H2O, where strontium replaces lead
  • Philipsbornite, PbAl3(AsO4)2(OH)5·H2O, where the arsenate group AsO4 replaces the phosphate group PO4
Plumbogummite
General
CategoryPhosphate minerals
Formula
(repeating unit)
PbAl3(PO4)2(OH)5·H2O
IMA symbolPbg[1]
Strunz classification8.BL.10
Dana classification42.7.3.5
Crystal systemTrigonal
Crystal classHexagonal scalenohedral (3m)
H-M symbol: (3 2/m)
Space groupR3m
Identification
Formula mass581.14 g/mol
ColorBlue, grey, greenish or yellow
Crystal habitCrystals, rare, have a hexagonal outline
CleavageNone
FractureUneven or sub-conchoidal
TenacityBrittle
Mohs scale hardness4 to 5 [2][3] or 4.5 to 5[4][5]
LusterResinous or dull
StreakWhite
DiaphaneityTranslucent
Specific gravity4.014
Optical propertiesUniaxial (+), segments of crystals may be biaxial[5]
Refractive indexno = 1.653[4] or 1.653 to 1.688[5]

ne = 1.675[4] or 1.675 to 1.704[5]

no = 1.722 and ne = 1.742 for Ga-rich plumbogummite[6]
PleochroismNone[6]
SolubilitySoluble in hot acids
Other characteristicsNon-fluorescent, not radioactive
References[2][3][4][5]

Plumbogummite was discovered in 1819[2] and named in 1832[4] from the Latin "plumbum" for lead, and "gummi" for gum, in allusion to its lead content and appearance, which at times resembles coatings of gum.

Unit cell

edit

Plumbogummite crystallizes in space group R3m. The reported lattice parameters (the lengths of the sides of the unit cell) vary in detail according to the source, but all agree that normal plumbogummite has "a" close to 7 Å and "c" close to 17 Å, with Z=3. Various reported values of "a" and "c"are:

a = 7.01 Å,[2] 7.017 Å,[5] 7.018 Å,[3] 7.033 Å[4]
c = 16.71Å,[2] 16.75 Å,[5] 16.784 Å,[3] 16.789 Å[4]

Mills et al.[6] investigated a gallium-rich sample of plumbogummite from Tsumeb, Namibia, and found larger cell parameters, with a = 7.0752 Å and c = 16.818 Å.

Structure

edit

The basic structural units of plumbogummite are PO4 tetrahedra, with phosphorus atoms (P) at the center and oxygen atoms (O) at the corners, together with AlO6 octahedra, aluminium atoms (Al) at the center and oxygen atoms at the corners. The tetrahedra and octahedra combine by sharing corners, to form composite layers. Lead atoms (Pb) occupy sites between the layers.[6]

Environment

edit

Plumbogummite is found in the oxidized zones of lead-bearing deposits. It commonly occurs as botryoidal, kidney shaped, stalactitic or globular crusts or masses, frequently with a concentric structure; rare crystals have a hexagonal outline. Pyromorphite and baryte are commonly associated minerals, and plumbogummite may be pseudomorphic after them. Other associated minerals include mimetite, duftite, cerussite, anglesite and wulfenite.[5]

Occurrence

edit

The type locality is Huelgoat, Finistère, Brittany, France, and the type material is stored in the Natural History Museum, Paris, France.[5]

Plumbogummite has been found in the Central Cobar Mines, New South Wales, Australia[7] and the Nifty Copper Mine, Western Australia.[8] Also in the Kintore open cut at Broken Hill, New South Wales, Australia, but it is generally inconspicuous there and only a few specimens have been collected.[9]

Material from the Siglio XX Mine, Llallagua, Bolivia, is an unusual pale yellow color, rather than the more common blue or green, forming crusts on quartz and cassiterite, and enclosing crude octahedral jeanbandyite crystals with orange colored shells of plumbogummite.[10]

References

edit
  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ a b c d e f Mindat.org
  3. ^ a b c d Webmineral data
  4. ^ a b c d e f g Gaines et al (1997) Dana's New Mineralogy Eighth Edition, Wiley
  5. ^ a b c d e f g h i Handbook of Mineralogy
  6. ^ a b c d Mineralogical Magazine (2009) 73(5), 837–845
  7. ^ Australian Journal of Mineralogy 11-2, 77
  8. ^ Australian Journal of Mineralogy 12-1, 28
  9. ^ Australian Journal of Mineralogy 3-1, 32 and 50
  10. ^ Mineralogical Record 37-2, 127 and 148
edit