October 1949 lunar eclipse

A total lunar eclipse occurred at the Moon’s ascending node of orbit on Friday, October 7, 1949,[1] with an umbral magnitude of 1.2236. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 15 hours before apogee (on October 7, 1949, at 18:10 UTC), the Moon's apparent diameter was smaller.[2]

October 1949 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateOctober 7, 1949
Gamma−0.3219
Magnitude1.2236
Saros cycle126 (42 of 72)
Totality72 minutes, 50 seconds
Partiality222 minutes, 53 seconds
Penumbral369 minutes, 11 seconds
Contacts (UTC)
P123:51:50
U11:04:59
U22:20:01
Greatest2:56:26
U33:32:51
U44:47:52
P46:01:02

This lunar eclipse was the second of a tetrad, with four total lunar eclipses in series, the others being on April 13, 1949; April 2, 1950; and September 26, 1950.

Visibility

edit

The eclipse was completely visible over eastern North America, South America, and west Africa, and western Europe, seen rising over western North America and the eastern Pacific Ocean and setting over much of Africa, Europe, and west, central, and south Asia.[3]

   

Eclipse details

edit

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

October 7, 1949 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.31179
Umbral Magnitude 1.22363
Gamma −0.32191
Sun Right Ascension 12h49m43.2s
Sun Declination -05°20'02.0"
Sun Semi-Diameter 16'00.3"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 00h50m16.7s
Moon Declination +05°04'46.9"
Moon Semi-Diameter 14'42.5"
Moon Equatorial Horizontal Parallax 0°53'58.9"
ΔT 29.0 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of October 1949
October 7
Ascending node (full moon)
October 21
Descending node (new moon)
   
Total lunar eclipse
Lunar Saros 126
Partial solar eclipse
Solar Saros 152
edit

Eclipses in 1949

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Lunar Saros 126

edit

Inex

edit

Triad

edit

Lunar eclipses of 1948–1951

edit

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on February 21, 1951 and August 17, 1951 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 1948 to 1951
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
111 1948 Apr 23
 
Partial
 
1.0017 116 1948 Oct 18
 
Penumbral
 
−1.0245
121 1949 Apr 13
 
Total
 
0.2474 126 1949 Oct 07
 
Total
 
−0.3219
131 1950 Apr 02
 
Total
 
−0.4599 136 1950 Sep 26
 
Total
 
0.4101
141 1951 Mar 23
 
Penumbral
 
−1.2099 146 1951 Sep 15
 
Penumbral
 
1.1187

Saros 126

edit

This eclipse is a part of Saros series 126, repeating every 18 years, 11 days, and containing 70 events. The series started with a penumbral lunar eclipse on July 18, 1228. It contains partial eclipses from March 24, 1625 through June 9, 1751; total eclipses from June 19, 1769 through November 9, 2003; and a second set of partial eclipses from November 19, 2021 through June 5, 2346. The series ends at member 70 as a penumbral eclipse on August 19, 2472.

The longest duration of totality was produced by member 36 at 106 minutes, 27 seconds on August 13, 1859. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Greatest First
The greatest eclipse of the series occurred on 1859 Aug 13, lasting 106 minutes, 27 seconds.[7] Penumbral Partial Total Central
1228 Jul 18
1625 Mar 24
1769 Jun 19
1805 Jul 11
Last
Central Total Partial Penumbral
1931 Sep 26
 
2003 Nov 09
 
2346 Jun 05
2472 Aug 19

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Half-Saros cycle

edit

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 133.

October 1, 1940 October 12, 1958
   

See also

edit

Notes

edit
  1. ^ "October 6–7, 1949 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 21 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 21 December 2024.
  3. ^ "Total Lunar Eclipse of 1949 Oct 07" (PDF). NASA. Retrieved 21 December 2024.
  4. ^ "Total Lunar Eclipse of 1949 Oct 07". EclipseWise.com. Retrieved 21 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 126". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 126
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
edit