In human physiology, nitrogen balance is the net difference between bodily nitrogen intake (ingestion) and loss (excretion). It can be represented as the following:
Nitrogen is a fundamental chemical component of amino acids, the molecular building blocks of protein. As such, nitrogen balance may be used as an index of protein metabolism.[1] When more nitrogen is gained than lost by an individual, they are considered to have a positive nitrogen balance and be in a state of overall protein anabolism. In contrast, a negative nitrogen balance, in which more nitrogen is lost than gained, indicates a state of overall protein catabolism.[2]
The body obtains nitrogen from dietary protein, sources of which include meat, fish, eggs, dairy products, nuts, legumes, cereals, and grains. Nitrogen loss occurs largely through urine in the form of urea, as well as through faeces, sweat, and growth of hair and skin.
Blood urea nitrogen and urine urea nitrogen tests can be used to estimate nitrogen balance.
Physiological and Clinical Implications
editPositive nitrogen balance is associated with periods of growth, hypothyroidism, tissue repair, and pregnancy.
Negative nitrogen balance is associated with burns, serious tissue injuries, fever, hyperthyroidism, wasting diseases, and periods of fasting. A negative nitrogen balance can be used as part of a clinical evaluation of malnutrition.[3]
Nitrogen balance is a method traditionally used to measure dietary protein requirements.[4] This approach necessitates the meticulous collection of all nitrogen inputs and outputs to ensure comprehensive accounting of nitrogen exchanges.[5] Nitrogen balance studies typically involve controlled dietary conditions, requiring participants to consume specific diets to determine total nitrogen intake precisely. Furthermore, participants often must remain at the study location for the duration of the study to facilitate the collection of all nitrogen losses. Physical exercise is also known to influence nitrogen excretion, adding another variable that requires control during these studies.[6] Due to the stringent conditions required for accurate results, the nitrogen balance method may pose challenges when studying dietary protein requirements across different demographics, such as children.[7]
See also
editReferences
edit- ^ World Health Organization Protein and amino acid requirements in human nutrition. WHO Technical Report Series 935 [1]
- ^ Dickerson, Roland (April 2016). "Nitrogen Balance and Protein Requirements for Critically Ill Older Patients". Nutrients. 8 (4): 226. doi:10.3390/nu8040226. PMC 4848694. PMID 27096868.
- ^ Barbosa-Silva MC (May 2008). "Subjective and objective nutritional assessment methods: what do they really assess?". Curr Opin Clin Nutr Metab Care. 11 (3): 248–54. doi:10.1097/MCO.0b013e3282fba5d7. PMID 18403920. S2CID 26831957.
- ^ Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients). The National Academies Press: 2005
- ^ Rand WM, Pellett PL, Young VR (2003). Meta-analysis of nitrogen balance studies for estimating protein requirements in health adults. Am.J.Nutr 77(1):109-127.
- ^ Clauss, Matthieu; Burkhardt, Meike; Wöber, Sophie; Skålhegg, Bjørn Steen; Jensen, Jørgen (21 February 2024). "Effect of five hours of mixed exercise on urinary nitrogen excretion in healthy moderate-to-well-trained young adults". Frontiers in Nutrition. 11. doi:10.3389/fnut.2024.1345922. PMC 10914964. PMID 38450230.
- ^ Elango R, Humayun MA, Ball RO, Pencharz PB (2011). "Protein requirements of healthy, school-aged children determined by the indicator amino acid oxidation method". Am. J. Clin. Nutr. 94 (6): 1545–1552. doi:10.3945/ajcn.111.012815. PMID 22049165.
External links
edit- "Test Definition: NITF". Mayo Clinic Laboratories. (with clinical information & interpretation related to nitrogen balance and its clinical testing)