NL5 is a mixed-signal electronic circuit simulator with ideal and piecewise-linear components.

Developer(s)Sidelinesoft
Initial releaseJanuary 2009; 15 years ago (2009-01)
Stable release
2.72 / May 2020; 4 years ago (2020-05)
Operating systemMicrosoft Windows
TypeSimulation software
LicenseProprietary
Websitesidelinesoft.com/nl5

History

edit

The first generation of NL (non-linear) analog simulator was developed in the late 1980s for different types of computers and operating systems. In early 1990s, NL migrated to MS-DOS and Windows based personal computers. For many years it was a proprietary tool of a few research labs and small companies, used to design control systems, measurement equipment, and power supplies.[1] The first publicly available version of NL5 (the fifth generation of NL) was released on January 1, 2009.

Components

edit

NL5 uses simple analog components and models, including ideal components:

  • Ideal switch with zero/infinite resistance and instantaneous switching
  • Ideal diode with constant voltage drop when closed, and zero current when open
  • Ideal amplifier with zero output resistance, infinite gain, and infinite bandwidth

Non-linear components are represented as piecewise-linear, or as a function (simulated with one step delay). For mixed-signal systems, system-level, and behavioral modeling NL5 uses simple basic digital, function, C-code, and DLL components. Practically all parameters of NL5 components can be set to positive, negative, zero, or infinity value. NL5 schematic may have arbitrary, even unrealizable topology, with floating nodes, "voltage loops", etc.

Analysis

edit

NL5 performs transient simulation using modified nodal analysis and trapezoidal integration. A special algorithm is in place to handle simulation with ideal components (e.g. zero/infinite resistance and instantaneous switching).

NL5 performs 3 types of AC analysis:

  • Small signal, for linear and linearized non-linear circuits
  • Sweep AC source (variable-frequency sinusoidal source), for non-linear and switching circuits
  • z-transform, for constant frequency switching circuits

Modules and features

edit
  • Transient tools: FFT, XY plot, eye diagram, amplitude histogram, and more
  • AC tools: Smith chart, Nyquist plot, Nichols plot
  • Post-processing: performs various mathematical operations on transient and AC results
  • Command line, script (C-language)
  • HTTP interface: built-in HTTP server
  • Interface to some oscilloscope models through VISA interface
  • Encrypted components and schematic files
  • Co-simulation with digital simulators. NL5 DLL is an NL5 transient simulation engine with an API in the form of a Windows DLL. It can be used as an analog simulation engine for co-simulation with System Verilog digital simulators (e.g. Xilinx Vivado). Also, NL5 DLL functions can be called from C/C++ applications, MATLAB, Python, etc., and perform co-simulation with user's tool of choice.

Applications

edit
  • Industry. Dialog Semiconductor, developer of power-management integrated circuits for consumer electronics, has adopted NL5 as a mixed-signal simulation tool, and provides NL5 models of their digital power controllers to customers.[2] Simulation results obtained with NL5 are used by electronics companies in application notes[3][4] and conference proceedings.[5] Due to piecewise-linear nature, NL5 is listed among preferred simulators for switching circuits.[6]
  • Science/Research. NL5 is used in research labs to design control systems and electronics for scientific applications.[1][7][8] It is used for scholar articles published in IEEE journals,[9] and presented at conferences and workshops[10][11]
  • Academia. Since 2009, NL5 is a simulation tool of preference for power electronics laboratory course at Colorado State University.[12] It is used by students all over the world for theses in different electronics-related fields.[13][14][15] NL5 has been mentioned in reviews of educational software tools.[16][17] NL5 is also being used as a demonstration and teaching tool of basics of physics and electronics.[18][19]

Licensing

edit

Without a license, NL5 works in a demo mode, with full functionality and limited number of circuit components. Free licenses are available for educational institutions and students (1 year license).[citation needed] Different types of temporary and permanent licenses are available for individuals and companies.

References

edit
  1. ^ a b Anushat, V; Dahlerup-Petersen, K; Erokhin, A; Kussul, A; Medvedko, A (2000). "Modeling and Computer Simulation of the Pulsed Powering of Mechanical D.C. Circuit Breakers for the CERN/LHC Superconducting Magnet Energy Extraction System". CERN Accelerating science. Retrieved 5 January 2019.
  2. ^ "DiaSIM™ Simulation Models". Dialog Semiconductor. 2018-11-22. Retrieved 6 January 2019.
  3. ^ "AC/DC Simulation Tools Combine Analog and Digital Blocks for Higher Accuracy" (PDF). Dialog Field Team Newsletter. Dialog Semiconductor. 2017. p. 3. Retrieved 13 January 2019.
  4. ^ Ворошилов, А (2016). "Влияние синфазных электромагнитных помех на работу РЗА в СОПТ. Борьба с ложными срабатываниями". Новости Электротехники (in Russian). 97 (2). ЗАО «Новости Электротехники», Санкт-Петербург. Retrieved 14 January 2019.
  5. ^ Isurin, A; Cook, A (2016). "Step-up DC-DC converter for automotive application". 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). Karlsruhe, Germany: IEEE. pp. 1–9. doi:10.1109/EPE.2016.7695284. ISBN 978-9-0758-1524-5. S2CID 15094407.
  6. ^ White, Robert V. (March 2015). "A Look in My Toolbox: Part II [White Hot]". IEEE Power Electronics Magazine. 2 (1). IEEE: 56–54. doi:10.1109/MPEL.2014.2381455.
  7. ^ Сеньков, Д.В; Медведко, А.С (2015). "Управляющий Контроллер Высоковольтного Источника Энергоблока Установки Электронно-лучевой Сварки" (PDF). Автометрия (in Russian). 51 (6). ИАиЭ СО РАН: 117–124. Retrieved 6 January 2019.
  8. ^ Setiniyaz, S; Kim, H.W; Baek, IH; et al. (2016). "Beam characterization at the KAERI UED beamline". Journal of the Korean Physical Society. 69 (6). The Korean Physical Society: 1019–1024. arXiv:1610.02135. Bibcode:2016JKPS...69.1019S. doi:10.3938/jkps.69.1019. ISSN 1976-8524. S2CID 119268584.
  9. ^ Antoszczuk, P; Cervellini, P; Retegui, R.G; Funes, M (March 2017). "Optimized Switching Sequence for Multiphase Power Converters Under Inductance Mismatch". IEEE Transactions on Power Electronics. 32 (3). IEEE: 1697–1702. Bibcode:2017ITPE...32.1697A. doi:10.1109/TPEL.2016.2602810. hdl:11336/64950. S2CID 25640217.
  10. ^ Fischer, J.R; Martinez, J.F; Judewicz, M.G; Echeverría, N.I; Gonzalez, S.A (2017). "Robust predictive current control with harmonic compensators for grid-connected VSI". 2017 XVII Workshop on Information Processing and Control (RPIC) (in Spanish). Mar del Plata, Argentina: IEEE. pp. 1–6. doi:10.23919/RPIC.2017.8211642. ISBN 978-987-544-754-7. S2CID 32553645. Retrieved 11 January 2019.
  11. ^ Divya Navamani, J; Vijayakumar, K; Jegatheesan, R (2017). "Study on High Step-up DC-DC Converter with High Gain Cell for PV Applications". Procedia Computer Science. 115. Elsevier B.V.: 731–739. doi:10.1016/j.procs.2017.09.109. ISSN 1877-0509.
  12. ^ "ECE562 - Power Electronics I". Electrical & Computer Engineering. Colorado State University, College of Engineering. Retrieved 14 January 2019.
  13. ^ Kabala, M (2017). Application of distributed DC/DC electronics in photovoltaic systems (MS thesis). Colorado State University. p. 28. Bibcode:2017MsT.........28K. hdl:10217/183942.
  14. ^ Карелин, В (2017). "Разработка геликонного источника плазмы для линейной установки по изучению взаимодействия плазмы с материалами" (in Russian). BS Thesis, Department of Plasma Physics, Novosibirsk State University. Retrieved 6 January 2019.
  15. ^ Martinez, J (1 March 2017). Diseño y construcción de un convertidor trifásico de 3 niveles (Thesis) (in Spanish). Universidad Nacional de Mar del Plata. Retrieved 13 January 2019.
  16. ^ Bertolotti, F; Ferreira, F (2014). "PANORAMA SOBRE PROGRAMAS DE SIMULACION DE CIRCUITOS DE ELECTRONICA DE POTENCIA" (PDF). XIII International Conference on Engineering and Technology Education (in Spanish). COPEC: 473–475. Retrieved 11 January 2019.
  17. ^ Silva, V.M; Oliveira, W (2017). "SOFTWARES DIDÁTICOS GRATUITOS E DE CÓDIGO ABERTO: FERRAMENTAS PARA POTENCIALIZAR O ENSINO DAS ENGENHARIAS". XLV Congresso Brasileiro de Educação Em Engenharia - COBENGE 2017 (in Portuguese). Retrieved 13 January 2019.
  18. ^ Lepil, O; Kodejška, Č (2018). "Netradiční experimenty s vázanými oscilátory". Matematika–Fyzika–Informatika (in Czech). 27 (1): 26–36. ISSN 1805-7705. Retrieved 10 January 2019.
  19. ^ Lepil, O; Látal, F (2014). "Rezonance v učivu o střídavých proudech". Matematika-Fyzika-Informatika (in Czech). 23 (5): 356–368. ISSN 1805-7705. Retrieved 6 January 2019.
edit

Official website