In algebraic number theory, Minkowski's bound gives an upper bound of the norm of ideals to be checked in order to determine the class number of a number field K. It is named for the mathematician Hermann Minkowski.

Definition

edit

Let D be the discriminant of the field, n be the degree of K over  , and   be the number of complex embeddings where   is the number of real embeddings. Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound

 

Minkowski's constant for the field K is this bound MK.[1]

Properties

edit

Since the number of integral ideals of given norm is finite, the finiteness of the class number is an immediate consequence,[1] and further, the ideal class group is generated by the prime ideals of norm at most MK.

Minkowski's bound may be used to derive a lower bound for the discriminant of a field K given n, r1 and r2. Since an integral ideal has norm at least one, we have 1 ≤ MK, so that

 

For n at least 2, it is easy to show that the lower bound is greater than 1, so we obtain Minkowski's Theorem, that the discriminant of every number field, other than Q, is non-trivial. This implies that the field of rational numbers has no unramified extension.

Proof

edit

The result is a consequence of Minkowski's theorem.

References

edit
  1. ^ a b Pohst & Zassenhaus (1989) p.384
  • Koch, Helmut (1997). Algebraic Number Theory. Encycl. Math. Sci. Vol. 62 (2nd printing of 1st ed.). Springer-Verlag. ISBN 3-540-63003-1. Zbl 0819.11044.
  • Lang, Serge (1994). Algebraic Number Theory. Graduate Texts in Mathematics. Vol. 110 (second ed.). New York: Springer. ISBN 0-387-94225-4. Zbl 0811.11001.
  • Pohst, M.; Zassenhaus, H. (1989). Algorithmic Algebraic Number Theory. Encyclopedia of Mathematics and its Applications. Vol. 30. Cambridge University Press. ISBN 0-521-33060-2. Zbl 0685.12001.
edit