Lobachevsky integral formula

In mathematics, Dirichlet integrals play an important role in distribution theory. We can see the Dirichlet integral in terms of distributions.

One of those is the improper integral of the sinc function over the positive real line,

Lobachevsky's Dirichlet integral formula

edit

Let   be a continuous function satisfying the  -periodic assumption  , and  , for  . If the integral   is taken to be an improper Riemann integral, we have Lobachevsky's Dirichlet integral formula

 

Moreover, we have the following identity as an extension of the Lobachevsky Dirichlet integral formula[1]

 

As an application, take  . Then

 

References

edit
  1. ^ Jolany, Hassan (2018). "An extension of Lobachevsky formula". Elemente der Mathematik. 73 (3): 89–94. arXiv:1004.2653. doi:10.4171/EM/358.
  • Hardy, G. H. (1909). "The Integral  ". The Mathematical Gazette. 5 (80): 98–103. JSTOR 3602798.
  • Dixon, Alfred Cardew (1912). "Proof That  ". The Mathematical Gazette. 6 (96): 223–224. JSTOR 3604314.