This article contains lists of quasars. More than a million quasars have been observed,[1] so any list on Wikipedia is necessarily a selection of them.
Proper naming of quasars are by Catalogue Entry, Qxxxx±yy using B1950 coordinates, or QSO Jxxxx±yyyy using J2000 coordinates. They may also use the prefix QSR. There are currently no quasars that are visible to the naked eye.
List of quasars
editThis is a list of exceptional quasars for characteristics otherwise not separately listed
Quasar | Notes |
---|---|
Twin Quasar | Associated with a possible planet microlensing event in the gravitational lens galaxy that is doubling the Twin Quasar's image. |
QSR J1819+3845 | Proved interstellar scintillation due to the interstellar medium. |
CTA-102 | In 1965, Soviet astronomer Nikolai S. Kardashev declared that this quasar was sending coded messages from an alien civilization.[2] |
CID-42 | Its supermassive black hole is being ejected and will one day become a displaced quasar. |
TON 618 | TON 618 is a very distant and extremely luminous quasar—technically, a hyperluminous, broad-absorption line, radio-loud quasar—located near the North Galactic Pole in the constellation Canes Venatici. |
List of named quasars
editThis is a list of quasars, with a common name, instead of a designation from a survey, catalogue or list.
Quasar | Origin of name | Notes |
---|---|---|
Twin Quasar | From the fact that two images of the same quasar are produced by gravitational lensing. | |
Einstein Cross | From the fact that gravitational lensing of the quasar forms a near perfect Einstein cross, a concept in gravitational lensing. | |
Triple Quasar | From the fact that there are three bright images of the same gravitationally lensed quasar. | There are actually four images; the fourth is faint. |
Cloverleaf | From its appearance having similarity to the leaf of a clover. It has been gravitationally lensed into four images, of roughly similar appearance. | |
Teacup Galaxy | The name comes from the shape of the extended emission, which is shaped like the handle of a teacup. The handle is a bubble shaped by quasar winds or small-scale radio jets. | Low redshift, highly obscured type 2 quasar. |
List of multiply imaged quasars
editThis is a list of quasars that as a result of gravitational lensing appear as multiple images on Earth.
Quasar | Images | Lens | Notes |
---|---|---|---|
Twin Quasar | 2 | YGKOW G1 | First gravitationally lensed object discovered |
Triple Quasar (PG 1115+080) | 4 | Originally discovered as 3 lensed images, the fourth image is faint. It was the second gravitationally lensed quasar discovered. | |
Einstein Cross | 4 | Huchra's Lens | First Einstein Cross discovered |
RX J1131-1231's quasar | 4 | RX J1131-1231's elliptical galaxy | RX J1131-1231 is the name of the complex, quasar, host galaxy and lensing galaxy, together. The quasar's host galaxy is also lensed into a Chwolson ring about the lensing galaxy. The four images of the quasar are embedded in the ring image. |
Cloverleaf | 4[3] | Brightest known high-redshift source of CO emission[4] | |
QSO B1359+154 | 6 | CLASS B1359+154 and three more galaxies | First sextuply-imaged galaxy |
SDSS J1004+4112 | 5 | Galaxy cluster at z = 0.68 | First quasar discovered to be multiply image-lensed by a galaxy cluster and currently the third largest quasar lens with the separation between images of 15″[5][6][7] |
SDSS J1029+2623 | 3 | Galaxy cluster at z = 0.6 | The current largest-separation quasar lens with 22.6″ separation between furthest images[8][9][10] |
SDSS J2222+2745 | 6[11] | Galaxy cluster at z = 0.49[12] | First sextuply-lensed galaxy[11] Third quasar discovered to be lensed by a galaxy cluster.[12] Quasar located at z = 2.82[12] |
List of visual quasar associations
editThis is a list of double quasars, triple quasars, and the like, where quasars are close together in line-of-sight, but not physically related.
Quasars | Count | Notes |
---|---|---|
QSO 1548+115
|
2 | [13][14] |
QSO 1146+111 | 8 | [15] |
z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion |
List of physical quasar groups
editThis is a list of binary quasars, trinary quasars, and the like, where quasars are physically close to each other.
Quasars | Count | Notes |
---|---|---|
quasars of SDSS J0841+3921 protocluster | 4 | First quasar quartet discovered.[16][17] |
LBQS 1429-008 (QQQ 1432-0106) | 3 | First quasar triplet discovered. It was first discovered as a binary quasar, before the third quasar was found.[18] |
QQ2345+007 (Q2345+007)
|
2 | Originally thought to be a doubly imaged quasar, but actually a quasar couplet.[19] |
QQQ J1519+0627 | 3 | [20] |
Large Quasar Groups
editLarge quasar groups (LQGs) are bound to a filament of mass, and not directly bound to each other.
LQG | Count | Notes |
---|---|---|
Webster LQG (LQG 1) |
5 | First LQG discovered. At the time of its discovery, it was the largest structure known.[21][22] |
Huge-LQG (U1.27) |
73 | The largest structure known in the observable universe, as of 2013.[23][24] |
List of quasars with apparent superluminal jet motion
editThis is a list of quasars with jets that appear to be superluminal due to relativistic effects and line-of-sight orientation. Such quasars are sometimes referred to as superluminal quasars.
Quasar | Superluminality | Notes |
---|---|---|
3C 279 | 4c | First quasar discovered with superluminal jets[25][26][27][28][29] |
3C 179 | 7.6c | Fifth discovered, first with double lobes[30] |
3C 273 | This is also the first quasar ever identified[31] | |
3C 216 | ||
3C 345 | [31][32] | |
3C 380 | ||
4C 69.21 (Q1642+690, QSO B1642+690) |
||
8C 1928+738 (Q1928+738, QSO J1927+73, Quasar J192748.6+735802) |
||
PKS 0637-752 | ||
QSO B1642+690 |
Quasars that have a recessional velocity greater than the speed of light (c) are very common. Any quasar with z > 1 is receding faster than c, while z exactly equal to 1 indicates recession at the speed of light.[33] Early attempts to explain superluminal quasars resulted in convoluted explanations with a limit of z = 2.326, or in the extreme z < 2.4.[34] The majority of quasars lie between z = 2 and z = 5.
Firsts
editTitle | Quasar | Year | Data | Notes |
---|---|---|---|---|
First quasar discovered | 3C 48 | 1960 | first radio source for which optical identification was found, that was a star-like looking object | |
First "star" discovered later found to be a quasar | ||||
First radio source discovered later found to be a quasar | ||||
First quasar identified | 3C 273 | 1962 | first radio-"star" found to be at a high redshift with a non-stellar spectrum. | |
First radio-quiet quasar | QSO B1246+377 (BSO 1) | 1965 | The first radio-quiet quasi-stellar objects (QSO) were called Blue Stellar Objects or BSO, because they appeared like stars and were blue in color. They also had spectra and redshifts like radio-loud quasi-stellar radio-sources (QSR), so became quasars.[27][35][36] | |
First host galaxy of a quasar discovered | 3C 48 | 1982 | ||
First quasar found to seemingly not have a host galaxy | HE0450-2958 (Naked Quasar) | 2005 | Some disputed observations suggest a host galaxy, others do not. | |
First multi-core quasar | PG 1302-102 | 2014 | Binary supermassive black holes within the quasar | [37][38] |
First quasar containing a recoiling supermassive black hole | SDSS J0927+2943 | 2008 | Two optical emission line systems separated by 2650 km/s | |
First gravitationally lensed quasar identified | Twin Quasar | 1979 | Lensed into 2 images | The lens is a galaxy known as YGKOW G1 |
First quasar found with a jet with apparent superluminal motion | 3C 279 | 1971 | [25][26][27] | |
First quasar found with the classic double radio-lobe structure | 3C 47 | 1964 | ||
First quasar found to be an X-ray source | 3C 273 | 1967 | [39] | |
First "dustless" quasar found | QSO J0303-0019 and QSO J0005-0006 | 2010 | [40][41][42][43][44][45][46] | |
First Large Quasar Group discovered | Webster LQG (LQG 1) |
1982 | [21][22] |
Extremes
editTitle | Quasar | Data | Notes |
---|---|---|---|
Brightest | 3C 273 | Apparent magnitude of ~12.9 | Absolute magnitude: −26.7 |
Seemingly optically brightest | APM 08279+5255 | Seeming absolute magnitude of −32.2 | This quasar is gravitationally lensed; its actual absolute magnitude is estimated to be −30.5 |
Most luminous | SMSS J215728.21-360215.1 | Absolute magnitude of −32.36 | Highest absolute magnitude discovered thus far. |
Most powerful quasar radio source | 3C 273 | Also the most powerful radio source in the sky | |
Most powerful | SMSS J215728.21-360215.1 | ||
Most variable quasar radio source | QSO J1819+3845 (Q1817+387) | Also the most variable extrasolar radio source | |
Least variable quasar radio source | |||
Most variable quasar optical source | |||
Least variable quasar optical source | |||
Most distant | UHZ1 | z = 10.1 | Most distant quasar known as of 2023[47] |
Most distant radio-quiet quasar | |||
Most distant radio-loud quasar | QSO J1427+3312 | z = 6.12 | Found June 2008[48][49] |
Most distant blazar quasar | PSO J0309+27 | z > 6 | |
Least distant | Markarian 231 | 600 Mly | [50] inactive: IC 2497 |
Largest Large Quasar Group | Huge-LQG (U1.27) |
73 quasars | [23][24] |
Fastest Growing Quasar | SMSS J052915.80–435152.0 (QSO J0529-4351) | ~ 413 solar masses per year (using standard radiative efficiency); ~ 370 solar masses per year (using best-fit slim disc model) | [51][52] |
First quasars found
editRank | Quasar | Date of discovery | Notes |
---|---|---|---|
1 | 3C 273 | 1963 | [53] |
2 | 3C 48 | 1963 | [53] |
3 | 3C 47 | 1964 | [53] |
3 | 3C 147 | 1964 | [53] |
5 | CTA 102 | 1965 | [54] |
5 | 3C 287 | 1965 | [54] |
5 | 3C 254 | 1965 | [54] |
5 | 3C 245 | 1965 | [54] |
5 | 3C 9 | 1965 | [54] |
These are the first quasars which were found and had their redshifts determined. |
Most distant quasars
editIn 1964 a quasar became the most distant object in the universe for the first time. Quasars would remain the most distant objects in the universe until 1997, when a pair of non-quasar galaxies would take the title (galaxies CL 1358+62 G1 & CL 1358+62 G2 lensed by galaxy cluster CL 1358+62).[55]
In cosmic scales distance is usually indicated by redshift (denoted by z) which is a measure of recessional velocity and inferred distance due to cosmological expansion.
Type | Quasar | Date | Distance | Notes |
---|---|---|---|---|
Most distant | UHZ1 | 2023 | z = 10.2 | [75] |
Most distant radio loud quasar | QSO B1425+3326 / QSO J1427+3312 | 2008 | z = 6.12 | |
Most distant radio quiet quasar | ||||
Most distant OVV quasar |
Quasar | Date | Distance | Notes |
---|---|---|---|
UHZ1 | 2023– | z = 10.2 | Current distance record holder [75] |
QSO J0313−1806 | 2021–2023 | z = 7.64 | [57][75] |
ULAS J1342+0928 | 2017–2021 | z = 7.54 | [76] |
ULAS J1120+0641 | 2011–2017 | z = 7.085 | Not the most distant object when discovered. First quasar with z > 7.[58] |
CFHQS J2329-0301 (CFHQS J232908-030158) |
2007–2011 | z = 6.43 | Not the most distant object when discovered. It did not exceed IOK-1 (z = 6.96), which was discovered in 2006.[59][60][61][62][77][78][79] |
SDSS J114816.64+525150.3 (SDSS J1148+5251) |
2003–2007 | z = 6.419 | Not the most distant object when discovered. It did not exceed HCM 6A galaxy lensed by Abell 370 at z = 6.56, discovered in 2002. Also discovered around the time of discovery was a new most distant galaxy, SDF J132418.3+271455 at z = 6.58.[63][64][65][62][77][80][81][82][83][84] |
SDSS J1030+0524 (SDSSp J103027.10+052455.0) |
2001–2003 | z = 6.28 | Most distant object when discovered. First object with z > 6.[68][66][69][70][72][73] |
SDSS 1044-0125 (SDSSp J104433.04-012502.2) |
2000–2001 | z = 5.82 | Most distant object when discovered. It exceeded galaxy SSA22-HCM1 (z = 5.74; discovered in 1999) as the most distant object.[85][86][72][73][77][87][88] |
RD300 (RD J030117+002025) |
2000 | z = 5.50 | Not the most distant object when discovered. It did not surpass galaxy SSA22-HCM1 (z = 5.74; discovered in 1999).[89][90][86][91][77] |
SDSSp J120441.73−002149.6 (SDSS J1204-0021) |
2000 | z = 5.03 | Not the most distant object when discovered. It did not surpass galaxy SSA22-HCM1 (z = 5.74; discovered in 1999).[91][77] |
SDSSp J033829.31+002156.3 (QSO J0338+0021) |
1998–2000 | z = 5.00 | First quasar discovered with z > 5. Not the most distant object when discovered. It did not surpass galaxy BR1202-0725 LAE (z = 5.64; discovered earlier in 1998).[77][85][92][93][94][95][96] |
PC 1247+3406 | 1991–1998 | z = 4.897 | Most distant object when discovered.[85][97][98][99][100] |
PC 1158+4635 | 1989–1991 | z = 4.73 | Most distant object when discovered.[85][100][101][102][103][104] |
Q0051-279 | 1987–1989 | z = 4.43 | Most distant object when discovered.[105][101][104][106][107][108] |
Q0000-26 (QSO B0000-26) |
1987 | z = 4.11 | Most distant object when discovered.[105][101][109] |
PC 0910+5625 (QSO B0910+5625) |
1987 | z = 4.04 | Most distant object when discovered; second quasar with z > 4.[85][101][110][111] |
Q0046–293 (QSO J0048-2903) |
1987 | z = 4.01 | Most distant object when discovered; first quasar with z > 4.[105][101][110][112][113] |
Q1208+1011 (QSO B1208+1011) |
1986–1987 | z = 3.80 | Most distant object when discovered and a gravitationally-lensed double-image quasar. From the time of discovery to 1991, had the least angular separation between images, 0.45″.[110][114][115] |
PKS 2000-330 (QSO J2003-3251, Q2000-330) |
1982–1986 | z = 3.78 | Most distant object when discovered.[33][110][116][117] |
OQ172 (QSO B1442+101) |
1974–1982 | z = 3.53 | Most distant object when discovered.[118][119][120] |
OH471 (QSO B0642+449) |
1973–1974 | z = 3.408 | Most distant object when discovered; first quasar with z > 3. Nicknamed "the blaze marking the edge of the universe".[118][120][121][122][123] |
4C 05.34 | 1970–1973 | z = 2.877 | Most distant object when discovered. The redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[33][34][120][124][125] |
5C 02.56 (7C 105517.75+495540.95) |
1968–1970 | z = 2.399 | Most distant object when discovered.[125][126][55] |
4C 25.05 (4C 25.5) |
1968 | z = 2.358 | Most distant object when discovered.[125][55][127] |
PKS 0237-23 (QSO B0237-2321) |
1967–1968 | z = 2.225 | Most distant object when discovered.[33][127][128][129][130] |
4C 12.39 (Q1116+12, PKS 1116+12) |
1966–1967 | z = 2.1291 | Most distant object when discovered.[55][130][131][132] |
4C 01.02 (Q0106+01, PKS 0106+1) |
1965–1966 | z = 2.0990 | Most distant object when discovered.[55][130][131][133] |
3C 9 | 1965 | z = 2.018 | Most distant object when discovered; first quasar with z > 2.[2][35][130][134][135][136] |
3C 147 | 1964–1965 | z = 0.545 | First quasar to become the most distant object in the universe, beating radio galaxy 3C 295.[137][138][139][140] |
3C 48 | 1963–1964 | z = 0.367 | Second quasar redshift measured. Redshift was discovered after publication of 3C273's results prompted researchers to re-examine spectroscopic data. Not the most distant object when discovered. The radio galaxy 3C 295 was found in 1960 with z = 0.461.[27][33][141][142][143][53][137] |
3C 273 | 1963 | z = 0.158 | First quasar redshift measured. Not the most distant object when discovered. The radio galaxy 3C 295 was found in 1960 with z = 0.461.[27][53][142][143][144] |
Most powerful quasars
editRank | Quasar | Data | Notes |
---|---|---|---|
1 | SMSS J215728.21-360215.1 | It has an intrinsic bolometric luminosity of ~ 6.9 × 1014 Suns or ~ 2.6 × 1041 watts | [145] |
2 | HS 1946+7658 | It has an intrinsic bolometric luminosity in excess of 1014 Suns or 1041 watts | [146][147] |
3 | SDSS J155152.46+191104.0 | Has over 1041 watts luminosity | [148][149] |
4 | HS 1700+6416 | Has a luminosity of over 1041 watts | [150] |
5 | SDSS J010013.02+280225.8 | Has a luminosity of around 1.62 × 1041 watts | [151] |
6 | SBS 1425+606 | Has a luminosity of over 1041 watts – optically brightest for z>3 | [152] |
J1144-4308 | Has a luminosity of 4.7 x 1040 watts or M_i(z=2) = -29.74 mag, optically brightest in last 9 Gyr | [153] | |
SDSS J074521.78+473436.2 | [154][155] | ||
S5 0014+813 | [150][156] | ||
SDSS J160455.39+381201.6 | z = 2.51, M(i) = 15.84 | ||
SDSS J085543.40-001517.7 | [157] |
See also
editReferences
edit- ^ Subir Sarkar (20 January 2021). "Re-examining cosmic acceleration" (PDF). Sommerfeld Theory Colloquium, Ludwig Maximilian University of Munich. p. 41.
- ^ a b "Toward the Edge of the Universe". Time Magazine. 21 May 1965. Archived from the original on 20 February 2008.
- ^ Magain, P.; Surdej, J.; Swings, J.-P.; Borgeest, U.; Kayser, R. (1988). "Discovery of a quadruply lensed quasar - The 'clover leaf' H1413 + 117". Nature. 334 (6180): 325–327. Bibcode:1988Natur.334..325M. doi:10.1038/334325a0. S2CID 4366260.
- ^ Venturini, S.; Solomon, P. M. (2003). "The Molecular Disk in the Cloverleaf Quasar". The Astrophysical Journal. 590 (2): 740–745. arXiv:astro-ph/0210529. Bibcode:2003ApJ...590..740V. doi:10.1086/375050. S2CID 761080.
- ^ Inada, N.; et al. (2003). "A Gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds". Nature. 426 (6968): 810–812. arXiv:astro-ph/0312427. Bibcode:2003Natur.426..810I. doi:10.1038/nature02153. PMID 14685230. S2CID 4411894.
- ^ Oguri, M.; et al. (2004). "Observations and Theoretical Implications of the Large-Separation Lensed Quasar SDSS J1004+4112". The Astrophysical Journal. 605 (1): 78–97. arXiv:astro-ph/0312429. Bibcode:2004ApJ...605...78O. doi:10.1086/382221. S2CID 15594674.
- ^ Inada, N.; et al. (2005). "Discovery of a Fifth Image of the Large Separation Gravitationally Lensed Quasar SDSS J1004+4112". Publications of the Astronomical Society of Japan. 57 (3): L7–L10. arXiv:astro-ph/0503310. Bibcode:2005PASJ...57L...7I. doi:10.1093/pasj/57.3.L7.
- ^ Inada, Naohisa; et al. (2006). "SDSS J1029+2623: A Gravitationally Lensed Quasar with an Image Separation of 22."5". The Astrophysical Journal. 653 (2): L97–L100. arXiv:astro-ph/0611275. Bibcode:2006ApJ...653L..97I. doi:10.1086/510671. S2CID 7368712.
- ^ Oguri, Masamune; et al. (2008). "The Third Image of the Large-Separation Lensed Quasar SDSS J1029+2623". The Astrophysical Journal. 676 (1): L1–L4. arXiv:0802.0002. Bibcode:2008ApJ...676L...1O. doi:10.1086/586897. S2CID 740758.
- ^ Kratzer, Rachael M; et al. (2011). "Analyzing the Flux Anomalies of the Large-Separation Lensed Quasar SDSS J1029+2623". The Astrophysical Journal. 728 (1): L18. arXiv:1008.2315. Bibcode:2011ApJ...728L..18K. doi:10.1088/2041-8205/728/1/L18. S2CID 119154857.
- ^ a b ScienceDaily, "Quasar Observed in Six Separate Light Reflections", 7 August 2013
- ^ a b c Dahle, H.; et al. (2013). "SDSS J2222+2745: A Gravitationally Lensed Sextuple Quasar with a Maximum Image Separation of 15.1″ Discovered in the Sloan Giant Arcs Survey". The Astrophysical Journal. 773 (2): 146. arXiv:1211.1091. Bibcode:2013ApJ...773..146D. doi:10.1088/0004-637X/773/2/146. S2CID 89604876.
- ^ SIMBAD, Object query : QSO 1548+115
- ^ Burke, Bernard F. (1986). "Gravitational lenses - Observations". Quasars, Proceedings of the IAU Symposium, Bangalore, India, 2–6 December 1985. Vol. 119. D. Reidel Publishing Co. p. 517. Bibcode:1986IAUS..119..517B.
- ^ SIMBAD, Object query : QSO 1146+111
- ^ Space Daily, "Astronomers Baffled by Discovery of Rare Quasar Quartet", 18 May 2015
- ^ Hennawi, Joseph F.; Prochaska, J. Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio (15 May 2015). "Quasar Quartet Embedded in Giant Nebula Reveals Rare Massive Structure in Distant Universe". Science. 348 (6236): 779–783. arXiv:1505.03786. Bibcode:2015Sci...348..779H. doi:10.1126/science.aaa5397. PMID 25977547. S2CID 35281881.
- ^ Robert Naeye (10 January 2007). "The First Triple Quasar". Sky & Telescope.
- ^ Alan MacRobert (7 July 2006). "Binary Quasar Is No Illusion". Sky & Telescope.
- ^ SpaceDaily, "Extremely rare triple quasar found", 14 March 2013 (accessed 14 March 2013)
- ^ a b Webster, A (1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society. 199 (3): 683–705. Bibcode:1982MNRAS.199..683W. doi:10.1093/mnras/199.3.683.
- ^ a b Clowes, Roger (2001). "Large Quasar Groups - A Short Review". In Clowes, Roger; Adamson, Andrew; Bromage, Gordon (eds.). The new era of wide field astronomy : proceedings of a conference held at the Centre for Astrophysics, University of Central Lancashire, Preston, United Kingdom, 21-24 August 2000. Vol. 232. Astronomical Society of the Pacific. p. 108. Bibcode:2001ASPC..232..108C. ISBN 1-58381-065-X.
{{cite book}}
:|journal=
ignored (help) - ^ a b Clowes, Roger G.; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Soechting, Ilona K.; Graham, Matthew J. (2013). "A structure in the early universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society. 429 (4): 2910–2916. arXiv:1211.6256. Bibcode:2013MNRAS.429.2910C. doi:10.1093/mnras/sts497.
- ^ a b ScienceDaily, "Biggest Structure in Universe: Large Quasar Group Is 4 Billion Light Years Across", Royal Astronomical Society, 11 January 2013 (accessed 13 January 2013)
- ^ a b Unwin, Stephen C. (1987). "Superluminal motion in the quasar 3C279". Superluminal radio sources; Proceedings of the Workshop, Pasadena, Calif., 28–30 October 1986. Cambridge University Press. pp. 34–39. Bibcode:1987slrs.work...34U.
- ^ a b Preuss, E. (2002). "The Beginnings of VLBI at the 100-m Radio Telescope". In E. Ros; R. W. Porcas; A. P. Lobanov; J. A. Zensus (eds.). 6th European VLBI Network Symposium on New Developments in VLBI Science and Technology, held in Bonn, 25–28 June 25 2002. Max-Planck-Institut für Radioastronomie. p. 1. Bibcode:2002evn..conf....1P.
{{cite book}}
:|journal=
ignored (help) - ^ a b c d e Collin, Suzy (2006). "Quasars and Galactic Nuclei, a Half-Century Agitated Story". AIP Conference Proceedings. 861: 587–595. arXiv:astro-ph/0604560. Bibcode:2006AIPC..861..587C. doi:10.1063/1.2399629. S2CID 14346374.
- ^ New Scientist, Quasar jets and cosmic engines: Some galaxies spew out vast amounts of material into space at velocities close to that of light. Astronomers still don't know why, 16 March 1991
- ^ The superluminal radio source in the gamma-ray blazar 3C 279
- ^ Porcas, R. W (1981). "Superluminal quasar 3C179 with double radio lobes". Nature. 294 (5836): 47–49. Bibcode:1981Natur.294...47P. doi:10.1038/294047a0. S2CID 4242168.
- ^ a b Daily Intelligencer, The May 29, 1981;
- ^ Walter Sullivan (27 December 1983). "If Nothing Is Faster than Light, What's Going On?". The New York Times. p. C1.
- ^ a b c d e The Structure of the Physical Universe, Volume III - The Universe of Motion, CHAPTER 23 - Quasar Redshifts Archived 2008-06-19 at the Wayback Machine, by Dewey Bernard Larson, Library of Congress Catalog Card No. 79-88078, ISBN 0-913138-11-8, Copyright 1959, 1971, 1984
- ^ a b Quasars and Pulsars, Dewey Bernard Larson, (c) 1971; CHAPTER VIII - Quasars: The General Picture Archived 2008-06-19 at the Wayback Machine; LOC 75-158894
- ^ a b "The Quasi-Quasars". Time. 18 June 1965. Archived from the original on 23 April 2008.
- ^ SIMBAD, Object query : BSO 1, QSO B1246+377 -- Quasar
- ^ Xaq Rzetelny (8 January 2015). "Supermassive black hole binary discovered".
- ^ Matthew J. Graham; S. George Djorgovski; Daniel Stern; Eilat Glikman; Andrew J. Drake; Ashish A. Mahabal; Ciro Donalek; Steve Larson; Eric Christensen (25 July 2014). "A possible close supermassive black-hole binary in a quasar with optical periodicity". Nature. 518 (7537) (published 7 January 2015): 74–76. arXiv:1501.01375. Bibcode:2015Natur.518...74G. doi:10.1038/nature14143. PMID 25561176. S2CID 4459433.
- ^ "X Rays from a Quasar". Time. 14 July 1967. Archived from the original on 15 December 2008.
- ^ Discovery News, "Primordial 'Dust Free' Monsters Lurk at the Edge of the Universe", Ian O'Neill, 18 March 2010 (accessed 6 April 2010)
- ^ DNA India, "Astronomers discover most primitive supermassive black holes known", ANI, 19 March 2010 (accessed 6 April 2010)
- ^ "Most primitive supermassive black holes known 'discovered'". The Times of India. Press Trust of India. 19 March 2010. Retrieved 6 April 2010.
- ^ Jiang, Linhua; Fan, Xiaohui; Brandt, W. N; Carilli, Chris L; Egami, Eiichi; Hines, Dean C; Kurk, Jaron D; Richards, Gordon T; Shen, Yue; Strauss, Michael A; Vestergaard, Marianne; Walter, Fabian (2010). "Dust-free quasars in the early Universe". Nature. 464 (7287): 380–383. arXiv:1003.3432. Bibcode:2010Natur.464..380J. doi:10.1038/nature08877. PMID 20237563. S2CID 4317805.
- ^ Scientific Computing, "Fast-growing Primitive Black Holes found in Distant Quasars " Archived 26 February 2012 at the Wayback Machine (accessed 4 April 2010)
- ^ SIMBAD, "QSO J0303-0019" (accessed 4 April 2010)
- ^ SIMBAD, "QSO J0005-0006" (accessed 4 April 2010)
- ^ a b "APOD: 2023 November 10 - UHZ1: Distant Galaxy and Black Hole". apod.nasa.gov. Retrieved 10 November 2023.
- ^ a b Radio astronomers detect 'baby quasar' near the edge of the visible Universe, 13:50 EST, 6 June 2008
- ^ SIMBAD, Object query : QSO J1427+3312, QSO J1427+3312 -- Quasar
- ^ "Double black hole is powering quasar, astronomers find". CNN. 31 August 2015.
- ^ European Southern Observatory. "Brightest and fastest-growing: astronomers identify record-breaking quasar". www.eso.org. Retrieved 19 February 2024.
- ^ Wolf, Christian; Lai, Samuel (21 December 2023). "The accretion of a solar mass per day by a 17-billion solar mass black hole" (PDF). www.eso.org. Retrieved 20 February 2024.
- ^ a b c d e f Interview; "Maaarten Schmidt" (PDF). (556 KB); 11 April and 2 & 15 May 1996
- ^ a b c d e Shields, Gregory A. (June 1999). "A Brief History of Active Galactic Nuclei". Publications of the Astronomical Society of the Pacific. 111 (760): 661–678. arXiv:astro-ph/9903401. Bibcode:1999PASP..111..661S. doi:10.1086/316378. S2CID 18953602.; Shields, G. "A Brief History of AGN". nedwww.ipac.caltech.edu.
- ^ a b c d e Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science. 269/270: 165–181. arXiv:astro-ph/0009187. Bibcode:1999Ap&SS.269..165I. doi:10.1023/A:1017052809781. S2CID 119363931.; Illingworth, G. "8. Z > 5 Galaxies". nedwww.ipac.caltech.edu.
- ^ Schneider, Donald P.; et al. (August 2005). "The Sloan Digital Sky Survey Quasar Catalog. III. Third Data Release". The Astronomical Journal. 130 (2): 367–380. arXiv:astro-ph/0503679. Bibcode:2005AJ....130..367S. doi:10.1086/431156. S2CID 21213675.
- ^ a b Maria Temming (18 January 2021), "The most ancient supermassive black hole is bafflingly big", Science News
- ^ a b Scientific American, "Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe", John Matson, 29 June 2011
- ^ a b Discovery.com Black Hole Is Most Distant Ever Found Archived 2008-06-16 at the Wayback Machine 7 June 2007
- ^ a b c d e Willott, C. J.; et al. (2007). "Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey". The Astronomical Journal. 134 (6): 2435–2450. arXiv:0706.0914. Bibcode:2007AJ....134.2435W. doi:10.1086/522962. S2CID 9718805.
- ^ a b CFHQS UOttawa, Canada-France High-z Quasar Survey Archived 2008-05-05 at the Wayback Machine
- ^ a b c d CFH UHawaii, Astronomers find most distant black hole
- ^ a b Bertoldi, F; et al. (2003). "High-excitation CO in a quasar host galaxy at z = 6.42". Astronomy & Astrophysics. 409 (3): L47–L50. arXiv:astro-ph/0307408. Bibcode:2003A&A...409L..47B. doi:10.1051/0004-6361:20031345. S2CID 14799311.
- ^ a b Beelen, A.; et al. (2006). "350 Micron Dust Emission from High Redshift Quasars". The Astrophysical Journal. 642 (2): 694–701. arXiv:astro-ph/0603121. Bibcode:2006ApJ...642..694B. doi:10.1086/500636. S2CID 118902314.
- ^ a b Dokuchaev, V. I; Eroshenko, Yu. N; Rubin, S. G (2007). "Origin of supermassive black holes". arXiv:0709.0070 [astro-ph].
- ^ a b c White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (July 2003). "Probing the Ionization State of the Universe at z > 6". The Astronomical Journal. 126 (1): 1–14. arXiv:astro-ph/0303476. Bibcode:2003AJ....126....1W. doi:10.1086/375547. S2CID 51505828.
- ^ a b c d e f g h Wang, Ran; et al. (2007). "Millimeter and Radio Observations of z~6 Quasars". The Astronomical Journal. 134 (2): 617–627. arXiv:0704.2053. Bibcode:2007AJ....134..617W. doi:10.1086/518867. S2CID 17334898.
- ^ a b Pentericci, L; et al. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal. 123 (5): 2151. arXiv:astro-ph/0112075. Bibcode:2002AJ....123.2151P. doi:10.1086/340077. S2CID 119041760.
- ^ a b Haiman, Zoltán; Cen, Renyue (2002). "A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524". The Astrophysical Journal. 578 (2): 702–7. arXiv:astro-ph/0205143. Bibcode:2002ApJ...578..702H. doi:10.1086/342610. S2CID 12005897.
- ^ a b Farrah, D; Priddey, R; Wilman, R; Haehnelt, M; McMahon, R (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal. 611 (1): L13. arXiv:astro-ph/0406561. Bibcode:2004ApJ...611L..13F. doi:10.1086/423669. S2CID 14854831.
- ^ a b Fan, Xiaohui; et al. (December 2001). "A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ~ 6". The Astronomical Journal. 122 (6): 2833–2849. arXiv:astro-ph/0108063. Bibcode:2001AJ....122.2833F. doi:10.1086/324111. S2CID 119339804.
- ^ a b c d "Discovery Announced of Two Most Distant Objects". PennState Eberly College of Science. 5 June 2001. Archived from the original on 21 November 2007.
- ^ a b c d SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
- ^ SIMBAD, Object query : QSO B1425+3326 Archived 2009-09-12 at the Wayback Machine, QSO J1427+3312 -- Quasar
- ^ a b c Cosmin Ilie, Katherine Freese, Andreea Petric, Jillian Paulin (21 December 2023), UHZ1 and the other three most distant quasars observed: possible evidence for Supermassive Dark Stars, arXiv:2312.13837
{{citation}}
: CS1 maint: multiple names: authors list (link) - ^ Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
- ^ a b c d e f UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies - (Last Updated 10 February 2005) Archived 2007-06-18 at the Wayback Machine
- ^ Iye, Masanori; et al. (2006). "A galaxy at a redshift z = 6.96". Nature. 443 (7108): 186–8. arXiv:astro-ph/0609393. Bibcode:2006Natur.443..186I. doi:10.1038/nature05104. PMID 16971942. S2CID 2876103.
- ^ BBC News, Astronomers claim galaxy record, 11 July 2007, 17:10 GMT 18:10 UK
- ^ New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
- ^ BBC News, Far away stars light early cosmos, 14 March 2002, 11:38 GMT
- ^ BBC News, Most distant galaxy detected, 25 March 2003, 14:28 GMT
- ^ Hu, E. M.; et al. (5 March 2002). "A Redshift z = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal Letters. 568 (2): L75–L79. arXiv:astro-ph/0203091. Bibcode:2002ApJ...568L..75H. doi:10.1086/340424. S2CID 117047333.
- ^ Kodaira, K; et al. (2003). "The Discovery of Two Lyman α Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan. 55 (2): L17–L21. arXiv:astro-ph/0301096. Bibcode:2003PASJ...55L..17K. doi:10.1093/pasj/55.2.L17.
- ^ a b c d e "International Team of Astronomers Finds Most Distant Object". Science Journal. Vol. 17, no. 1. Eberly College of Science, PennState. Summer 2000. Archived from the original on 12 September 2009.
- ^ a b Hu, Esther M.; McMahon, Richard G.; Cowie, Lennox L. (3 August 1999). "An Extremely Luminous Galaxy at z = 5.74". The Astrophysical Journal Letters. 522 (1): L9–L12. arXiv:astro-ph/9907079. Bibcode:1999ApJ...522L...9H. doi:10.1086/312205. S2CID 119499546.
- ^ PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite Archived 2007-11-21 at the Wayback Machine, Dec 2000
- ^ SPACE.com, Most Distant Object in Universe Comes Closer, 1 December 2000
- ^ NOAO Newsletter - NOAO Highlights - March 2000 - Number 61, The Most Distant Quasar Known
- ^ Stern, Daniel; et al. (20 March 2002). "Chandra Detection of a Type II Quasar at z = 3.288". The Astrophysical Journal. 568 (1): 71–81. arXiv:astro-ph/0111513. Bibcode:2002ApJ...568...71S. doi:10.1086/338886. S2CID 119014942.
- ^ a b Stern, Daniel; Spinrad, Hyron; Eisenhardt, Peter; Bunker, Andrew J.; Dawson, Steve; Stanford, S. A.; Elston, Richard (20 April 2000). "Discovery of a Color-selected Quasar at z = 5.50". The Astrophysical Journal. 533 (2): L75–L78. arXiv:astro-ph/0002338. Bibcode:2000ApJ...533L..75S. doi:10.1086/312614. PMID 10770694. S2CID 28118881.
- ^ SDSS 98-3 Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Dec 1998
- ^ Fan, Xiaohui; et al. (January 2001). "High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. IV. Luminosity Function from the Fall Equatorial Stripe Sample". The Astronomical Journal. 121 (1): 54–65. arXiv:astro-ph/0008123. Bibcode:2001AJ....121...54F. doi:10.1086/318033. S2CID 119373674.
- ^ SIMBAD, Object query : SDSSp J033829.31+002156.3, QSO J0338+0021 -- Quasar
- ^ Henry Fountain (15 December 1998). "Observatory: Finding Distant Quasars". The New York Times. p. F5.
- ^ John Noble Wilford (20 October 1988). "Peering Back in Time, Astronomers Glimpse Galaxies Aborning". The New York Times. p. F1.
- ^ Smith, J. D; et al. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4". The Astronomical Journal. 108: 1147. Bibcode:1994AJ....108.1147S. doi:10.1086/117143.
- ^ New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
- ^ FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Archived 2009-09-12 at the Wayback Machine 8 December 1998
- ^ a b Hook, I. M; McMahon, R. G (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.010". Monthly Notices of the Royal Astronomical Society. 294 (1): L7–L12. arXiv:astro-ph/9801026. Bibcode:1998MNRAS.294L...7H. doi:10.1046/j.1365-8711.1998.01368.x.
- ^ a b c d e Turner, Edwin L (1991). "Quasars and galaxy formation. I - the Z greater than 4 objects". The Astronomical Journal. 101: 5. Bibcode:1991AJ....101....5T. doi:10.1086/115663.
- ^ SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
- ^ Cowie, Lennox L (1991). "Young Galaxies". Annals of the New York Academy of Sciences. 647 (1 Texas/ESO-Cer): 31–41. Bibcode:1991NYASA.647...31C. doi:10.1111/j.1749-6632.1991.tb32157.x. S2CID 222074763.
- ^ a b The New York Times, Peering to Edge of Time, Scientists Are Astonished, 20 November 1989
- ^ a b c Warren, S. J; Hewett, P. C; Osmer, P. S; Irwin, M. J (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature. 330 (6147): 453. Bibcode:1987Natur.330..453W. doi:10.1038/330453a0. S2CID 4352819.
- ^ Levshakov, S. A (1989). "Absorption spectra of quasars". Astrophysics. 29 (2): 657–671. Bibcode:1988Ap.....29..657L. doi:10.1007/BF01005972. S2CID 122978350.
- ^ The New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, 14 January 1988
- ^ John Noble Wilford (10 May 1988). "Astronomers Peer Deeper Into Cosmo". The New York Times. p. C1.
- ^ SIMBAD, Object query : Q0000-26, QSO B0000-26 -- Quasar
- ^ a b c d Schmidt, Maarten; Schneider, Donald P; Gunn, James E (1987). "PC 0910 + 5625 - an optically selected quasar with a redshift of 4.04". The Astrophysical Journal. 321: L7. Bibcode:1987ApJ...321L...7S. doi:10.1086/184996.
- ^ SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
- ^ Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (8 January 1987). "First observation of a quasar with a redshift of 4". Nature. 325 (6100): 131–133. Bibcode:1987Natur.325..131W. doi:10.1038/325131a0. S2CID 4335291.; First observation of a quasar with a redshift of 4
- ^ SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
- ^ SIMBAD, Object query : Q1208+1011, QSO B1208+1011 -- Quasar
- ^ NewScientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
- ^ Orwell Astronomical Society (Ipswich) - OASI; Archived Astronomy News Items, 1972 - 1997 Archived 2009-09-12 at the Wayback Machine
- ^ SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 -- Quasar
- ^ a b OSU Big Ear, History of the OSU Radio Observatory
- ^ SIMBAD, Object query : OQ172, QSO B1442+101 -- Quasar
- ^ a b c QUASARS - THREE YEARS LATER, 1974 Archived 2009-09-12 at the Wayback Machine
- ^ "The Edge of Night". Time. 23 April 1973. Archived from the original on 14 December 2008.
- ^ SIMBAD, Object query : OH471, QSO B0642+449 -- Quasar
- ^ Warren, S J; Hewett, P C (1 August 1990). "The detection of high-redshift quasars". Reports on Progress in Physics. 53 (8): 1095–1135. Bibcode:1990RPPh...53.1095W. doi:10.1088/0034-4885/53/8/003.
- ^ Bahcall, John N; Oke, J. B (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". The Astrophysical Journal. 163: 235. Bibcode:1971ApJ...163..235B. doi:10.1086/150762.
- ^ a b c Lynds, R; Wills, D (1970). "The Unusually Large Redshift of 4C 05.34". Nature. 226 (5245): 532. Bibcode:1970Natur.226..532L. doi:10.1038/226532a0. PMID 16057373.
- ^ SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 -- Quasar
- ^ a b Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". The Astrophysical Journal. 154: L41. Bibcode:1968ApJ...154L..41B. doi:10.1086/180265.
- ^ Time Magazine, A Farther-Out Quasar, 7 April 1967
- ^ SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 -- Quasar
- ^ a b c d Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". The Astrophysical Journal. 147: 851. Bibcode:1967ApJ...147..851B. doi:10.1086/149072.
- ^ a b Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
- ^ SIMBAD, Object query : Q1116+12, 4C 12.39 -- Quasar
- ^ SIMBAD, Object query : Q0106+01, 4C 01.02 -- Quasar
- ^ Malcolm S. Longair (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press. p. 7. ISBN 978-0-521-47436-8.
- ^ Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". The Astrophysical Journal. 141: 1295. Bibcode:1965ApJ...141.1295S. doi:10.1086/148217.
- ^ Ivor Robinson; Alfred Schild; E. L. Schucking (eds.). "Introduction: The Discovery of Radio Galaxies and Quasars". Proceedings of the First Texas Symposium on Relativistic Astrophysics. The University of Chicago.
- ^ a b Schmidt, Maarten; Matthews, Thomas A (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". The Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
- ^ Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". In Ivor Robinson; Alfred Schild; E.L. Schucking (eds.). Quasi-Stellar Sources and Gravitational Collapse, Proceedings of the 1st Texas Symposium on Relativistic Astrophysics. University of Chicago Press. p. 269. Bibcode:1965qssg.conf..269S.
- ^ Schneider, Donald P; Van Gorkom, J. H; Schmidt, Maarten; Gunn, James E (1992). "Radio properties of optically selected high-redshift quasars. I - VLA observations of 22 quasars at 6 CM". The Astronomical Journal. 103: 1451. Bibcode:1992AJ....103.1451S. doi:10.1086/116159.
- ^ "Finding the Fastest Galaxy: 76,000 Miles per Second". Time. 10 April 1964.
- ^ Greenstein, Jesse L; Matthews, Thomas A (1963). "Red-Shift of the Unusual Radio Source: 3C 48". Nature. 197 (4872): 1041. Bibcode:1963Natur.197.1041G. doi:10.1038/1971041a0. S2CID 4193798.
- ^ a b "1961 May 12 meeting of the Royal Astronomical Society". The Observatory. 81: 113–118. 1961. Bibcode:1961Obs....81..113.
- ^ a b P., Varshni, Y. (March 1979). "No redshift in 3C 295". Bulletin of the American Astronomical Society. 11: 458. Bibcode:1979BAAS...11..458V.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ The Origin of Matter Part 4
- ^ Wolf, Christian; et al. (2018). "Discovery of the Most Ultra-Luminous QSO Using GAIA, Sky Mapper, and WISE". Publications of the Astronomical Society of Australia. 35: e024. arXiv:1805.04317. Bibcode:2018PASA...35...24W. doi:10.1017/pasa.2018.22. S2CID 55363916.
- ^ Bachev, R; Strigachev, A; Semkov, E (2005). "Short-term optical variability of high-redshift QSO's". Monthly Notices of the Royal Astronomical Society. 358 (3): 774–780. arXiv:astro-ph/0412149. Bibcode:2005MNRAS.358..774B. doi:10.1111/j.1365-2966.2005.08708.x. S2CID 16843880.
- ^ Kuhn, O; Bechtold, J; Cutri, R; Elvis, M; Rieke, M (1995). "The spectral energy distribution of the z = 3 quasar: HS 1946+7658". The Astrophysical Journal. 438: 643. Bibcode:1995ApJ...438..643K. doi:10.1086/175107.
- ^ Pâris, Isabelle; et al. (2012). "The Sloan Digital Sky Survey quasar catalog: Ninth data release". Astronomy & Astrophysics. 548: A66. arXiv:1210.5166. Bibcode:2012A&A...548A..66P. doi:10.1051/0004-6361/201220142. S2CID 119304969.
- ^ Stern, Jonathan; Hennawi, Joseph F; Pott, Jörg-Uwe (2015). "Spatially Resolving the Kinematics of the <100 μas Quasar Broad Line Region using Spectroastrometry". The Astrophysical Journal. 804 (1): 57. arXiv:1502.07767. Bibcode:2015ApJ...804...57S. doi:10.1088/0004-637X/804/1/57. S2CID 118482601.
- ^ a b Eisenhardt, Peter R. M; et al. (2012). "The First Hyper-Luminous Infrared Galaxy Discovered by WISE". The Astrophysical Journal. 755 (2): 173. arXiv:1208.5517. Bibcode:2012ApJ...755..173E. doi:10.1088/0004-637X/755/2/173. S2CID 35487945.
- ^ Wu, Xue-Bing; et al. (2015). "An ultra-luminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30". Nature. 518 (7540): 512–515. arXiv:1502.07418. Bibcode:2015Natur.518..512W. doi:10.1038/nature14241. PMID 25719667. S2CID 4455954.
- ^ Stepanian, J. A.; Green, R. F.; Foltz, C. B.; Chaffee, F.; Chavushyan, V. H.; Lipovetsky, V. A.; Erastova, L. K. (December 2001). "Spectroscopy and Photometry of Stellar Objects from the Second Byurakan Survey". The Astronomical Journal. 122 (6): 3361–3382. Bibcode:2001AJ....122.3361S. doi:10.1086/324460.
- ^ Onken, Christopher A.; Lai, Samuel; Wolf, Christian; Lucy, Adrian B.; Hon, Wei Jeat; Tisserand, Patrick; Sokoloski, Jennifer L.; Luna, Gerardo J. M.; Manick, Rajeev; Fan, Xiaohui; Bian, Fuyan (8 June 2022). "Discovery of the most luminous quasar of the last 9 Gyr". Publications of the Astronomical Society of Australia. 39. arXiv:2206.04204. Bibcode:2022PASA...39...37O. doi:10.1017/pasa.2022.36.
- ^ Schneider, Donald P; et al. (2010). "The Sloan Digital Sky Survey Quasar Catalog V. Seventh Data Release". The Astronomical Journal. 139 (6): 2360–2373. arXiv:1004.1167. Bibcode:2010AJ....139.2360S. doi:10.1088/0004-6256/139/6/2360. S2CID 118367130.
- ^ Schneider, Donald P.; et al. (July 2007). "The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release". The Astronomical Journal. 134 (1): 102–117. arXiv:0704.0806. Bibcode:2007AJ....134..102S. doi:10.1086/518474. S2CID 14359163.
- ^ Elvis, Martin; Matsuoka, M; Siemiginowska, A; Fiore, F; Mihara, T; Brinkmann, W (1994). "An ASCA GIS spectrum of S5 0014+813 AT z = 3.384". The Astrophysical Journal. 436: L55. Bibcode:1994ApJ...436L..55E. doi:10.1086/187631.
- ^ Wu, Xue-Bing; et al. (2010). "A very bright i=16.44 quasar in the 'redshift desert' discovered by LAMOST". Research in Astronomy and Astrophysics. 10 (8): 737. arXiv:1005.5499. Bibcode:2010RAA....10..737W. doi:10.1088/1674-4527/10/8/003. S2CID 118576463.