This article contains lists of quasars. More than a million quasars have been observed,[1] so any list on Wikipedia is necessarily a selection of them.

Proper naming of quasars are by Catalogue Entry, Qxxxx±yy using B1950 coordinates, or QSO Jxxxx±yyyy using J2000 coordinates. They may also use the prefix QSR. There are currently no quasars that are visible to the naked eye.

List of quasars

edit

This is a list of exceptional quasars for characteristics otherwise not separately listed

Quasar Notes
Twin Quasar Associated with a possible planet microlensing event in the gravitational lens galaxy that is doubling the Twin Quasar's image.
QSR J1819+3845 Proved interstellar scintillation due to the interstellar medium.
CTA-102 In 1965, Soviet astronomer Nikolai S. Kardashev declared that this quasar was sending coded messages from an alien civilization.[2]
CID-42 Its supermassive black hole is being ejected and will one day become a displaced quasar.
TON 618 TON 618 is a very distant and extremely luminous quasar—technically, a hyperluminous, broad-absorption line, radio-loud quasar—located near the North Galactic Pole in the constellation Canes Venatici.

List of named quasars

edit

This is a list of quasars, with a common name, instead of a designation from a survey, catalogue or list.

Quasar Origin of name Notes
Twin Quasar From the fact that two images of the same quasar are produced by gravitational lensing.
Einstein Cross From the fact that gravitational lensing of the quasar forms a near perfect Einstein cross, a concept in gravitational lensing.
Triple Quasar From the fact that there are three bright images of the same gravitationally lensed quasar. There are actually four images; the fourth is faint.
Cloverleaf From its appearance having similarity to the leaf of a clover. It has been gravitationally lensed into four images, of roughly similar appearance.
Teacup Galaxy The name comes from the shape of the extended emission, which is shaped like the handle of a teacup. The handle is a bubble shaped by quasar winds or small-scale radio jets. Low redshift, highly obscured type 2 quasar.

List of multiply imaged quasars

edit

This is a list of quasars that as a result of gravitational lensing appear as multiple images on Earth.

Quasar Images Lens Notes
Twin Quasar 2 YGKOW G1 First gravitationally lensed object discovered
Triple Quasar (PG 1115+080) 4 Originally discovered as 3 lensed images, the fourth image is faint. It was the second gravitationally lensed quasar discovered.
Einstein Cross 4 Huchra's Lens First Einstein Cross discovered
RX J1131-1231's quasar 4 RX J1131-1231's elliptical galaxy RX J1131-1231 is the name of the complex, quasar, host galaxy and lensing galaxy, together. The quasar's host galaxy is also lensed into a Chwolson ring about the lensing galaxy. The four images of the quasar are embedded in the ring image.
Cloverleaf 4[3] Brightest known high-redshift source of CO emission[4]
QSO B1359+154 6 CLASS B1359+154 and three more galaxies First sextuply-imaged galaxy
SDSS J1004+4112 5 Galaxy cluster at z = 0.68 First quasar discovered to be multiply image-lensed by a galaxy cluster and currently the third largest quasar lens with the separation between images of 15″[5][6][7]
SDSS J1029+2623 3 Galaxy cluster at z = 0.6 The current largest-separation quasar lens with 22.6″ separation between furthest images[8][9][10]
SDSS J2222+2745 6[11] Galaxy cluster at z = 0.49[12] First sextuply-lensed galaxy[11] Third quasar discovered to be lensed by a galaxy cluster.[12] Quasar located at z = 2.82[12]

List of visual quasar associations

edit

This is a list of double quasars, triple quasars, and the like, where quasars are close together in line-of-sight, but not physically related.

Quasars Count Notes
QSO 1548+115
4C 11.50 (z = 0.436)
QSO B1548+115B (z = 1.901)
2 [13][14]
QSO 1146+111 8 [15]
z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion

List of physical quasar groups

edit

This is a list of binary quasars, trinary quasars, and the like, where quasars are physically close to each other.

Quasars Count Notes
quasars of SDSS J0841+3921 protocluster 4 First quasar quartet discovered.[16][17]
LBQS 1429-008 (QQQ 1432-0106) 3 First quasar triplet discovered.
It was first discovered as a binary quasar, before the third quasar was found.[18]
QQ2345+007 (Q2345+007)
Q2345+007A
Q2345+007B
2 Originally thought to be a doubly imaged quasar, but actually a quasar couplet.[19]
QQQ J1519+0627 3 [20]

Large Quasar Groups

edit

Large quasar groups (LQGs) are bound to a filament of mass, and not directly bound to each other.

LQG Count Notes
Webster LQG
(LQG 1)
5 First LQG discovered. At the time of its discovery, it was the largest structure known.[21][22]
Huge-LQG
(U1.27)
73 The largest structure known in the observable universe, as of 2013.[23][24]

List of quasars with apparent superluminal jet motion

edit

This is a list of quasars with jets that appear to be superluminal due to relativistic effects and line-of-sight orientation. Such quasars are sometimes referred to as superluminal quasars.

Quasar Superluminality Notes
3C 279 4c First quasar discovered with superluminal jets[25][26][27][28][29]
3C 179 7.6c Fifth discovered, first with double lobes[30]
3C 273 This is also the first quasar ever identified[31]
3C 216
3C 345 [31][32]
3C 380
4C 69.21
(Q1642+690, QSO B1642+690)
8C 1928+738
(Q1928+738, QSO J1927+73, Quasar J192748.6+735802)
PKS 0637-752
QSO B1642+690

Quasars that have a recessional velocity greater than the speed of light (c) are very common. Any quasar with z > 1 is receding faster than c, while z exactly equal to 1 indicates recession at the speed of light.[33] Early attempts to explain superluminal quasars resulted in convoluted explanations with a limit of z = 2.326, or in the extreme z < 2.4.[34] The majority of quasars lie between z = 2 and z = 5.

Firsts

edit
Title Quasar Year Data Notes
First quasar discovered 3C 48 1960 first radio source for which optical identification was found, that was a star-like looking object
First "star" discovered later found to be a quasar
First radio source discovered later found to be a quasar
First quasar identified 3C 273 1962 first radio-"star" found to be at a high redshift with a non-stellar spectrum.
First radio-quiet quasar QSO B1246+377 (BSO 1) 1965 The first radio-quiet quasi-stellar objects (QSO) were called Blue Stellar Objects or BSO, because they appeared like stars and were blue in color. They also had spectra and redshifts like radio-loud quasi-stellar radio-sources (QSR), so became quasars.[27][35][36]
First host galaxy of a quasar discovered 3C 48 1982
First quasar found to seemingly not have a host galaxy HE0450-2958 (Naked Quasar) 2005 Some disputed observations suggest a host galaxy, others do not.
First multi-core quasar PG 1302-102 2014 Binary supermassive black holes within the quasar [37][38]
First quasar containing a recoiling supermassive black hole SDSS J0927+2943 2008 Two optical emission line systems separated by 2650 km/s
First gravitationally lensed quasar identified Twin Quasar 1979 Lensed into 2 images The lens is a galaxy known as YGKOW G1
First quasar found with a jet with apparent superluminal motion 3C 279 1971 [25][26][27]
First quasar found with the classic double radio-lobe structure 3C 47 1964
First quasar found to be an X-ray source 3C 273 1967 [39]
First "dustless" quasar found QSO J0303-0019 and QSO J0005-0006 2010 [40][41][42][43][44][45][46]
First Large Quasar Group discovered Webster LQG
(LQG 1)
1982 [21][22]

Extremes

edit
Title Quasar Data Notes
Brightest 3C 273 Apparent magnitude of ~12.9 Absolute magnitude: −26.7
Seemingly optically brightest APM 08279+5255 Seeming absolute magnitude of −32.2 This quasar is gravitationally lensed; its actual absolute magnitude is estimated to be −30.5
Most luminous SMSS J215728.21-360215.1 Absolute magnitude of −32.36 Highest absolute magnitude discovered thus far.
Most powerful quasar radio source 3C 273 Also the most powerful radio source in the sky
Most powerful SMSS J215728.21-360215.1
Most variable quasar radio source QSO J1819+3845 (Q1817+387) Also the most variable extrasolar radio source
Least variable quasar radio source
Most variable quasar optical source
Least variable quasar optical source
Most distant UHZ1 z = 10.1 Most distant quasar known as of 2023[47]
Most distant radio-quiet quasar
Most distant radio-loud quasar QSO J1427+3312 z = 6.12 Found June 2008[48][49]
Most distant blazar quasar PSO J0309+27 z > 6
Least distant Markarian 231 600 Mly [50] inactive: IC 2497
Largest Large Quasar Group Huge-LQG
(U1.27)
73 quasars [23][24]
Fastest Growing Quasar SMSS J052915.80–435152.0 (QSO J0529-4351) ~ 413 solar masses per year (using standard radiative efficiency); ~ 370 solar masses per year (using best-fit slim disc model) [51][52]

First quasars found

edit
First 10 Quasars Identified
Rank Quasar Date of discovery Notes
1 3C 273 1963 [53]
2 3C 48 1963 [53]
3 3C 47 1964 [53]
3 3C 147 1964 [53]
5 CTA 102 1965 [54]
5 3C 287 1965 [54]
5 3C 254 1965 [54]
5 3C 245 1965 [54]
5 3C 9 1965 [54]

These are the first quasars which were found and had their redshifts determined.

Most distant quasars

edit
 
Artist's conception of the oldest known quasar as of 2021, QSO J0313–1806 existing only ~670 million years after the Big Bang despite its large size.

In 1964 a quasar became the most distant object in the universe for the first time. Quasars would remain the most distant objects in the universe until 1997, when a pair of non-quasar galaxies would take the title (galaxies CL 1358+62 G1 & CL 1358+62 G2 lensed by galaxy cluster CL 1358+62).[55]

In cosmic scales distance is usually indicated by redshift (denoted by z) which is a measure of recessional velocity and inferred distance due to cosmological expansion.

Quasars with z > 6[56]
Quasar Distance Notes
UHZ1 z = 10.1 Most distant quasar known as of 2023[47]
QSO J0313–1806 z = 7.64 Former most distant quasar.[57]
ULAS J1342+0928 z = 7.54 Former most distant quasar.
J1007+2115 (Pōniuāʻena) z = 7.52
ULAS J1120+0641
(ULAS J112001.48+064124.3)
z = 7.085 Former most distant quasar. First quasar with z > 7.[58]
CHFQS J2348-3054
(CHFQS J234833.34-305410.0)
z = 6.90
PSO J172.3556+18.7734 z = 6.82 Currently the most distant radio-loud known quasar
CFHQS J2329-0301
(CFHQS J232908-030158)
z = 6.43 Former most distant quasar.[59][60][61][62]
SDSS J114816.64+525150.3
(SDSS J1148+5251)
z = 6.419 Former most distant quasar.[63][64][65][62][66][67]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
z = 6.28 Former most distant quasar. First quasar with z > 6.[68][66][69][70][71][72][73]
SDSS J104845.05+463718.3
(QSO J1048+4637)
z = 6.23 [67]
SDSS J162331.81+311200.5
(QSO J1623+3112)
z = 6.22 [67]
CFHQS J0033-0125
(CFHQS J003311-012524)
z = 6.13 [60]
SDSS J125051.93+313021.9
(QSO J1250+3130)
z = 6.13 [67]
CFHQS J1509-1749
(CFHQS J150941-174926)
z = 6.12 [60]
QSO B1425+3326 / QSO J1427+3312 z = 6.12 Most distant radio-quasar.[48][74]
SDSS J160253.98+422824.9
(QSO J1602+4228)
z = 6.07 [67]
SDSS J163033.90+401209.6
(QSO J1630+4012)
z = 6.05 [67]
CFHQS J1641+3755
(CFHQS J164121+375520)
z = 6.04 [60]
SDSS J113717.73+354956.9
(QSO J1137+3549)
z = 6.01 [67]
SDSS J081827.40+172251.8
(QSO J0818+1722)
z = 6.00 [67]
SDSSp J130608.26+035626.3
(QSO J1306+0356)
z = 5.99 [71][72][73]
Most Distant Quasar by Type
Type Quasar Date Distance Notes
Most distant UHZ1 2023 z = 10.2 [75]
Most distant radio loud quasar QSO B1425+3326 / QSO J1427+3312 2008 z = 6.12
Most distant radio quiet quasar
Most distant OVV quasar
Most Distant Quasar Titleholders
Quasar Date Distance Notes
UHZ1 2023– z = 10.2 Current distance record holder [75]
QSO J0313−1806 2021–2023 z = 7.64 [57][75]
ULAS J1342+0928 2017–2021 z = 7.54 [76]
ULAS J1120+0641 2011–2017 z = 7.085 Not the most distant object when discovered. First quasar with z > 7.[58]
CFHQS J2329-0301
(CFHQS J232908-030158)
2007–2011 z = 6.43 Not the most distant object when discovered. It did not exceed IOK-1 (z = 6.96), which was discovered in 2006.[59][60][61][62][77][78][79]
SDSS J114816.64+525150.3
(SDSS J1148+5251)
2003–2007 z = 6.419 Not the most distant object when discovered. It did not exceed HCM 6A galaxy lensed by Abell 370 at z = 6.56, discovered in 2002. Also discovered around the time of discovery was a new most distant galaxy, SDF J132418.3+271455 at z = 6.58.[63][64][65][62][77][80][81][82][83][84]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
2001–2003 z = 6.28 Most distant object when discovered. First object with z > 6.[68][66][69][70][72][73]
SDSS 1044-0125
(SDSSp J104433.04-012502.2)
2000–2001 z = 5.82 Most distant object when discovered. It exceeded galaxy SSA22-HCM1 (z = 5.74; discovered in 1999) as the most distant object.[85][86][72][73][77][87][88]
RD300
(RD J030117+002025)
2000 z = 5.50 Not the most distant object when discovered. It did not surpass galaxy SSA22-HCM1 (z = 5.74; discovered in 1999).[89][90][86][91][77]
SDSSp J120441.73−002149.6
(SDSS J1204-0021)
2000 z = 5.03 Not the most distant object when discovered. It did not surpass galaxy SSA22-HCM1 (z = 5.74; discovered in 1999).[91][77]
SDSSp J033829.31+002156.3
(QSO J0338+0021)
1998–2000 z = 5.00 First quasar discovered with z > 5. Not the most distant object when discovered. It did not surpass galaxy BR1202-0725 LAE (z = 5.64; discovered earlier in 1998).[77][85][92][93][94][95][96]
PC 1247+3406 1991–1998 z = 4.897 Most distant object when discovered.[85][97][98][99][100]
PC 1158+4635 1989–1991 z = 4.73 Most distant object when discovered.[85][100][101][102][103][104]
Q0051-279 1987–1989 z = 4.43 Most distant object when discovered.[105][101][104][106][107][108]
Q0000-26
(QSO B0000-26)
1987 z = 4.11 Most distant object when discovered.[105][101][109]
PC 0910+5625
(QSO B0910+5625)
1987 z = 4.04 Most distant object when discovered; second quasar with z > 4.[85][101][110][111]
Q0046–293
(QSO J0048-2903)
1987 z = 4.01 Most distant object when discovered; first quasar with z > 4.[105][101][110][112][113]
Q1208+1011
(QSO B1208+1011)
1986–1987 z = 3.80 Most distant object when discovered and a gravitationally-lensed double-image quasar. From the time of discovery to 1991, had the least angular separation between images, 0.45″.[110][114][115]
PKS 2000-330
(QSO J2003-3251, Q2000-330)
1982–1986 z = 3.78 Most distant object when discovered.[33][110][116][117]
OQ172
(QSO B1442+101)
1974–1982 z = 3.53 Most distant object when discovered.[118][119][120]
OH471
(QSO B0642+449)
1973–1974 z = 3.408 Most distant object when discovered; first quasar with z > 3. Nicknamed "the blaze marking the edge of the universe".[118][120][121][122][123]
4C 05.34 1970–1973 z = 2.877 Most distant object when discovered. The redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[33][34][120][124][125]
5C 02.56
(7C 105517.75+495540.95)
1968–1970 z = 2.399 Most distant object when discovered.[125][126][55]
4C 25.05
(4C 25.5)
1968 z = 2.358 Most distant object when discovered.[125][55][127]
PKS 0237-23
(QSO B0237-2321)
1967–1968 z = 2.225 Most distant object when discovered.[33][127][128][129][130]
4C 12.39
(Q1116+12, PKS 1116+12)
1966–1967 z = 2.1291 Most distant object when discovered.[55][130][131][132]
4C 01.02
(Q0106+01, PKS 0106+1)
1965–1966 z = 2.0990 Most distant object when discovered.[55][130][131][133]
3C 9 1965 z = 2.018 Most distant object when discovered; first quasar with z > 2.[2][35][130][134][135][136]
3C 147 1964–1965 z = 0.545 First quasar to become the most distant object in the universe, beating radio galaxy 3C 295.[137][138][139][140]
3C 48 1963–1964 z = 0.367 Second quasar redshift measured. Redshift was discovered after publication of 3C273's results prompted researchers to re-examine spectroscopic data. Not the most distant object when discovered. The radio galaxy 3C 295 was found in 1960 with z = 0.461.[27][33][141][142][143][53][137]
3C 273 1963 z = 0.158 First quasar redshift measured. Not the most distant object when discovered. The radio galaxy 3C 295 was found in 1960 with z = 0.461.[27][53][142][143][144]

Most powerful quasars

edit
10 Most luminous Quasars
Rank Quasar Data Notes
1 SMSS J215728.21-360215.1 It has an intrinsic bolometric luminosity of ~ 6.9 × 1014 Suns or ~ 2.6 × 1041 watts [145]
2 HS 1946+7658 It has an intrinsic bolometric luminosity in excess of 1014 Suns or 1041 watts [146][147]
3 SDSS J155152.46+191104.0 Has over 1041 watts luminosity [148][149]
4 HS 1700+6416 Has a luminosity of over 1041 watts [150]
5 SDSS J010013.02+280225.8 Has a luminosity of around 1.62 × 1041 watts [151]
6 SBS 1425+606 Has a luminosity of over 1041 watts – optically brightest for z>3 [152]
J1144-4308 Has a luminosity of 4.7 x 1040 watts or M_i(z=2) = -29.74 mag, optically brightest in last 9 Gyr [153]
SDSS J074521.78+473436.2 [154][155]
S5 0014+813 [150][156]
SDSS J160455.39+381201.6 z = 2.51, M(i) = 15.84
SDSS J085543.40-001517.7 [157]

See also

edit

References

edit
  1. ^ Subir Sarkar (20 January 2021). "Re-examining cosmic acceleration" (PDF). Sommerfeld Theory Colloquium, Ludwig Maximilian University of Munich. p. 41.
  2. ^ a b "Toward the Edge of the Universe". Time Magazine. 21 May 1965. Archived from the original on 20 February 2008.
  3. ^ Magain, P.; Surdej, J.; Swings, J.-P.; Borgeest, U.; Kayser, R. (1988). "Discovery of a quadruply lensed quasar - The 'clover leaf' H1413 + 117". Nature. 334 (6180): 325–327. Bibcode:1988Natur.334..325M. doi:10.1038/334325a0. S2CID 4366260.
  4. ^ Venturini, S.; Solomon, P. M. (2003). "The Molecular Disk in the Cloverleaf Quasar". The Astrophysical Journal. 590 (2): 740–745. arXiv:astro-ph/0210529. Bibcode:2003ApJ...590..740V. doi:10.1086/375050. S2CID 761080.
  5. ^ Inada, N.; et al. (2003). "A Gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds". Nature. 426 (6968): 810–812. arXiv:astro-ph/0312427. Bibcode:2003Natur.426..810I. doi:10.1038/nature02153. PMID 14685230. S2CID 4411894.
  6. ^ Oguri, M.; et al. (2004). "Observations and Theoretical Implications of the Large-Separation Lensed Quasar SDSS J1004+4112". The Astrophysical Journal. 605 (1): 78–97. arXiv:astro-ph/0312429. Bibcode:2004ApJ...605...78O. doi:10.1086/382221. S2CID 15594674.
  7. ^ Inada, N.; et al. (2005). "Discovery of a Fifth Image of the Large Separation Gravitationally Lensed Quasar SDSS J1004+4112". Publications of the Astronomical Society of Japan. 57 (3): L7–L10. arXiv:astro-ph/0503310. Bibcode:2005PASJ...57L...7I. doi:10.1093/pasj/57.3.L7.
  8. ^ Inada, Naohisa; et al. (2006). "SDSS J1029+2623: A Gravitationally Lensed Quasar with an Image Separation of 22."5". The Astrophysical Journal. 653 (2): L97–L100. arXiv:astro-ph/0611275. Bibcode:2006ApJ...653L..97I. doi:10.1086/510671. S2CID 7368712.
  9. ^ Oguri, Masamune; et al. (2008). "The Third Image of the Large-Separation Lensed Quasar SDSS J1029+2623". The Astrophysical Journal. 676 (1): L1–L4. arXiv:0802.0002. Bibcode:2008ApJ...676L...1O. doi:10.1086/586897. S2CID 740758.
  10. ^ Kratzer, Rachael M; et al. (2011). "Analyzing the Flux Anomalies of the Large-Separation Lensed Quasar SDSS J1029+2623". The Astrophysical Journal. 728 (1): L18. arXiv:1008.2315. Bibcode:2011ApJ...728L..18K. doi:10.1088/2041-8205/728/1/L18. S2CID 119154857.
  11. ^ a b ScienceDaily, "Quasar Observed in Six Separate Light Reflections", 7 August 2013
  12. ^ a b c Dahle, H.; et al. (2013). "SDSS J2222+2745: A Gravitationally Lensed Sextuple Quasar with a Maximum Image Separation of 15.1″ Discovered in the Sloan Giant Arcs Survey". The Astrophysical Journal. 773 (2): 146. arXiv:1211.1091. Bibcode:2013ApJ...773..146D. doi:10.1088/0004-637X/773/2/146. S2CID 89604876.
  13. ^ SIMBAD, Object query : QSO 1548+115
  14. ^ Burke, Bernard F. (1986). "Gravitational lenses - Observations". Quasars, Proceedings of the IAU Symposium, Bangalore, India, 2–6 December 1985. Vol. 119. D. Reidel Publishing Co. p. 517. Bibcode:1986IAUS..119..517B.
  15. ^ SIMBAD, Object query : QSO 1146+111
  16. ^ Space Daily, "Astronomers Baffled by Discovery of Rare Quasar Quartet", 18 May 2015
  17. ^ Hennawi, Joseph F.; Prochaska, J. Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio (15 May 2015). "Quasar Quartet Embedded in Giant Nebula Reveals Rare Massive Structure in Distant Universe". Science. 348 (6236): 779–783. arXiv:1505.03786. Bibcode:2015Sci...348..779H. doi:10.1126/science.aaa5397. PMID 25977547. S2CID 35281881.
  18. ^ Robert Naeye (10 January 2007). "The First Triple Quasar". Sky & Telescope.
  19. ^ Alan MacRobert (7 July 2006). "Binary Quasar Is No Illusion". Sky & Telescope.
  20. ^ SpaceDaily, "Extremely rare triple quasar found", 14 March 2013 (accessed 14 March 2013)
  21. ^ a b Webster, A (1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society. 199 (3): 683–705. Bibcode:1982MNRAS.199..683W. doi:10.1093/mnras/199.3.683.
  22. ^ a b Clowes, Roger (2001). "Large Quasar Groups - A Short Review". In Clowes, Roger; Adamson, Andrew; Bromage, Gordon (eds.). The new era of wide field astronomy : proceedings of a conference held at the Centre for Astrophysics, University of Central Lancashire, Preston, United Kingdom, 21-24 August 2000. Vol. 232. Astronomical Society of the Pacific. p. 108. Bibcode:2001ASPC..232..108C. ISBN 1-58381-065-X. {{cite book}}: |journal= ignored (help)
  23. ^ a b Clowes, Roger G.; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Soechting, Ilona K.; Graham, Matthew J. (2013). "A structure in the early universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society. 429 (4): 2910–2916. arXiv:1211.6256. Bibcode:2013MNRAS.429.2910C. doi:10.1093/mnras/sts497.
  24. ^ a b ScienceDaily, "Biggest Structure in Universe: Large Quasar Group Is 4 Billion Light Years Across", Royal Astronomical Society, 11 January 2013 (accessed 13 January 2013)
  25. ^ a b Unwin, Stephen C. (1987). "Superluminal motion in the quasar 3C279". Superluminal radio sources; Proceedings of the Workshop, Pasadena, Calif., 28–30 October 1986. Cambridge University Press. pp. 34–39. Bibcode:1987slrs.work...34U.
  26. ^ a b Preuss, E. (2002). "The Beginnings of VLBI at the 100-m Radio Telescope". In E. Ros; R. W. Porcas; A. P. Lobanov; J. A. Zensus (eds.). 6th European VLBI Network Symposium on New Developments in VLBI Science and Technology, held in Bonn, 25–28 June 25 2002. Max-Planck-Institut für Radioastronomie. p. 1. Bibcode:2002evn..conf....1P. {{cite book}}: |journal= ignored (help)
  27. ^ a b c d e Collin, Suzy (2006). "Quasars and Galactic Nuclei, a Half-Century Agitated Story". AIP Conference Proceedings. 861: 587–595. arXiv:astro-ph/0604560. Bibcode:2006AIPC..861..587C. doi:10.1063/1.2399629. S2CID 14346374.
  28. ^ New Scientist, Quasar jets and cosmic engines: Some galaxies spew out vast amounts of material into space at velocities close to that of light. Astronomers still don't know why, 16 March 1991
  29. ^ The superluminal radio source in the gamma-ray blazar 3C 279
  30. ^ Porcas, R. W (1981). "Superluminal quasar 3C179 with double radio lobes". Nature. 294 (5836): 47–49. Bibcode:1981Natur.294...47P. doi:10.1038/294047a0. S2CID 4242168.
  31. ^ a b Daily Intelligencer, The May 29, 1981;
  32. ^ Walter Sullivan (27 December 1983). "If Nothing Is Faster than Light, What's Going On?". The New York Times. p. C1.
  33. ^ a b c d e The Structure of the Physical Universe, Volume III - The Universe of Motion, CHAPTER 23 - Quasar Redshifts Archived 2008-06-19 at the Wayback Machine, by Dewey Bernard Larson, Library of Congress Catalog Card No. 79-88078, ISBN 0-913138-11-8, Copyright 1959, 1971, 1984
  34. ^ a b Quasars and Pulsars, Dewey Bernard Larson, (c) 1971; CHAPTER VIII - Quasars: The General Picture Archived 2008-06-19 at the Wayback Machine; LOC 75-158894
  35. ^ a b "The Quasi-Quasars". Time. 18 June 1965. Archived from the original on 23 April 2008.
  36. ^ SIMBAD, Object query : BSO 1, QSO B1246+377 -- Quasar
  37. ^ Xaq Rzetelny (8 January 2015). "Supermassive black hole binary discovered".
  38. ^ Matthew J. Graham; S. George Djorgovski; Daniel Stern; Eilat Glikman; Andrew J. Drake; Ashish A. Mahabal; Ciro Donalek; Steve Larson; Eric Christensen (25 July 2014). "A possible close supermassive black-hole binary in a quasar with optical periodicity". Nature. 518 (7537) (published 7 January 2015): 74–76. arXiv:1501.01375. Bibcode:2015Natur.518...74G. doi:10.1038/nature14143. PMID 25561176. S2CID 4459433.
  39. ^ "X Rays from a Quasar". Time. 14 July 1967. Archived from the original on 15 December 2008.
  40. ^ Discovery News, "Primordial 'Dust Free' Monsters Lurk at the Edge of the Universe", Ian O'Neill, 18 March 2010 (accessed 6 April 2010)
  41. ^ DNA India, "Astronomers discover most primitive supermassive black holes known", ANI, 19 March 2010 (accessed 6 April 2010)
  42. ^ "Most primitive supermassive black holes known 'discovered'". The Times of India. Press Trust of India. 19 March 2010. Retrieved 6 April 2010.
  43. ^ Jiang, Linhua; Fan, Xiaohui; Brandt, W. N; Carilli, Chris L; Egami, Eiichi; Hines, Dean C; Kurk, Jaron D; Richards, Gordon T; Shen, Yue; Strauss, Michael A; Vestergaard, Marianne; Walter, Fabian (2010). "Dust-free quasars in the early Universe". Nature. 464 (7287): 380–383. arXiv:1003.3432. Bibcode:2010Natur.464..380J. doi:10.1038/nature08877. PMID 20237563. S2CID 4317805.
  44. ^ Scientific Computing, "Fast-growing Primitive Black Holes found in Distant Quasars " Archived 26 February 2012 at the Wayback Machine (accessed 4 April 2010)
  45. ^ SIMBAD, "QSO J0303-0019" (accessed 4 April 2010)
  46. ^ SIMBAD, "QSO J0005-0006" (accessed 4 April 2010)
  47. ^ a b "APOD: 2023 November 10 - UHZ1: Distant Galaxy and Black Hole". apod.nasa.gov. Retrieved 10 November 2023.
  48. ^ a b Radio astronomers detect 'baby quasar' near the edge of the visible Universe, 13:50 EST, 6 June 2008
  49. ^ SIMBAD, Object query : QSO J1427+3312, QSO J1427+3312 -- Quasar
  50. ^ "Double black hole is powering quasar, astronomers find". CNN. 31 August 2015.
  51. ^ European Southern Observatory. "Brightest and fastest-growing: astronomers identify record-breaking quasar". www.eso.org. Retrieved 19 February 2024.
  52. ^ Wolf, Christian; Lai, Samuel (21 December 2023). "The accretion of a solar mass per day by a 17-billion solar mass black hole" (PDF). www.eso.org. Retrieved 20 February 2024.
  53. ^ a b c d e f Interview; "Maaarten Schmidt" (PDF). (556 KB); 11 April and 2 & 15 May 1996
  54. ^ a b c d e Shields, Gregory A. (June 1999). "A Brief History of Active Galactic Nuclei". Publications of the Astronomical Society of the Pacific. 111 (760): 661–678. arXiv:astro-ph/9903401. Bibcode:1999PASP..111..661S. doi:10.1086/316378. S2CID 18953602.; Shields, G. "A Brief History of AGN". nedwww.ipac.caltech.edu.
  55. ^ a b c d e Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science. 269/270: 165–181. arXiv:astro-ph/0009187. Bibcode:1999Ap&SS.269..165I. doi:10.1023/A:1017052809781. S2CID 119363931.; Illingworth, G. "8. Z > 5 Galaxies". nedwww.ipac.caltech.edu.
  56. ^ Schneider, Donald P.; et al. (August 2005). "The Sloan Digital Sky Survey Quasar Catalog. III. Third Data Release". The Astronomical Journal. 130 (2): 367–380. arXiv:astro-ph/0503679. Bibcode:2005AJ....130..367S. doi:10.1086/431156. S2CID 21213675.
  57. ^ a b Maria Temming (18 January 2021), "The most ancient supermassive black hole is bafflingly big", Science News
  58. ^ a b Scientific American, "Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe", John Matson, 29 June 2011
  59. ^ a b Discovery.com Black Hole Is Most Distant Ever Found Archived 2008-06-16 at the Wayback Machine 7 June 2007
  60. ^ a b c d e Willott, C. J.; et al. (2007). "Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey". The Astronomical Journal. 134 (6): 2435–2450. arXiv:0706.0914. Bibcode:2007AJ....134.2435W. doi:10.1086/522962. S2CID 9718805.
  61. ^ a b CFHQS UOttawa, Canada-France High-z Quasar Survey Archived 2008-05-05 at the Wayback Machine
  62. ^ a b c d CFH UHawaii, Astronomers find most distant black hole
  63. ^ a b Bertoldi, F; et al. (2003). "High-excitation CO in a quasar host galaxy at z = 6.42". Astronomy & Astrophysics. 409 (3): L47–L50. arXiv:astro-ph/0307408. Bibcode:2003A&A...409L..47B. doi:10.1051/0004-6361:20031345. S2CID 14799311.
  64. ^ a b Beelen, A.; et al. (2006). "350 Micron Dust Emission from High Redshift Quasars". The Astrophysical Journal. 642 (2): 694–701. arXiv:astro-ph/0603121. Bibcode:2006ApJ...642..694B. doi:10.1086/500636. S2CID 118902314.
  65. ^ a b Dokuchaev, V. I; Eroshenko, Yu. N; Rubin, S. G (2007). "Origin of supermassive black holes". arXiv:0709.0070 [astro-ph].
  66. ^ a b c White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (July 2003). "Probing the Ionization State of the Universe at z > 6". The Astronomical Journal. 126 (1): 1–14. arXiv:astro-ph/0303476. Bibcode:2003AJ....126....1W. doi:10.1086/375547. S2CID 51505828.
  67. ^ a b c d e f g h Wang, Ran; et al. (2007). "Millimeter and Radio Observations of z~6 Quasars". The Astronomical Journal. 134 (2): 617–627. arXiv:0704.2053. Bibcode:2007AJ....134..617W. doi:10.1086/518867. S2CID 17334898.
  68. ^ a b Pentericci, L; et al. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal. 123 (5): 2151. arXiv:astro-ph/0112075. Bibcode:2002AJ....123.2151P. doi:10.1086/340077. S2CID 119041760.
  69. ^ a b Haiman, Zoltán; Cen, Renyue (2002). "A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524". The Astrophysical Journal. 578 (2): 702–7. arXiv:astro-ph/0205143. Bibcode:2002ApJ...578..702H. doi:10.1086/342610. S2CID 12005897.
  70. ^ a b Farrah, D; Priddey, R; Wilman, R; Haehnelt, M; McMahon, R (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal. 611 (1): L13. arXiv:astro-ph/0406561. Bibcode:2004ApJ...611L..13F. doi:10.1086/423669. S2CID 14854831.
  71. ^ a b Fan, Xiaohui; et al. (December 2001). "A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ~ 6". The Astronomical Journal. 122 (6): 2833–2849. arXiv:astro-ph/0108063. Bibcode:2001AJ....122.2833F. doi:10.1086/324111. S2CID 119339804.
  72. ^ a b c d "Discovery Announced of Two Most Distant Objects". PennState Eberly College of Science. 5 June 2001. Archived from the original on 21 November 2007.
  73. ^ a b c d SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
  74. ^ SIMBAD, Object query : QSO B1425+3326 Archived 2009-09-12 at the Wayback Machine, QSO J1427+3312 -- Quasar
  75. ^ a b c Cosmin Ilie, Katherine Freese, Andreea Petric, Jillian Paulin (21 December 2023), UHZ1 and the other three most distant quasars observed: possible evidence for Supermassive Dark Stars, arXiv:2312.13837{{citation}}: CS1 maint: multiple names: authors list (link)
  76. ^ Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  77. ^ a b c d e f UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies - (Last Updated 10 February 2005) Archived 2007-06-18 at the Wayback Machine
  78. ^ Iye, Masanori; et al. (2006). "A galaxy at a redshift z = 6.96". Nature. 443 (7108): 186–8. arXiv:astro-ph/0609393. Bibcode:2006Natur.443..186I. doi:10.1038/nature05104. PMID 16971942. S2CID 2876103.
  79. ^ BBC News, Astronomers claim galaxy record, 11 July 2007, 17:10 GMT 18:10 UK
  80. ^ New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
  81. ^ BBC News, Far away stars light early cosmos, 14 March 2002, 11:38 GMT
  82. ^ BBC News, Most distant galaxy detected, 25 March 2003, 14:28 GMT
  83. ^ Hu, E. M.; et al. (5 March 2002). "A Redshift z = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal Letters. 568 (2): L75–L79. arXiv:astro-ph/0203091. Bibcode:2002ApJ...568L..75H. doi:10.1086/340424. S2CID 117047333.
  84. ^ Kodaira, K; et al. (2003). "The Discovery of Two Lyman α Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan. 55 (2): L17–L21. arXiv:astro-ph/0301096. Bibcode:2003PASJ...55L..17K. doi:10.1093/pasj/55.2.L17.
  85. ^ a b c d e "International Team of Astronomers Finds Most Distant Object". Science Journal. Vol. 17, no. 1. Eberly College of Science, PennState. Summer 2000. Archived from the original on 12 September 2009.
  86. ^ a b Hu, Esther M.; McMahon, Richard G.; Cowie, Lennox L. (3 August 1999). "An Extremely Luminous Galaxy at z = 5.74". The Astrophysical Journal Letters. 522 (1): L9–L12. arXiv:astro-ph/9907079. Bibcode:1999ApJ...522L...9H. doi:10.1086/312205. S2CID 119499546.
  87. ^ PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite Archived 2007-11-21 at the Wayback Machine, Dec 2000
  88. ^ SPACE.com, Most Distant Object in Universe Comes Closer, 1 December 2000
  89. ^ NOAO Newsletter - NOAO Highlights - March 2000 - Number 61, The Most Distant Quasar Known
  90. ^ Stern, Daniel; et al. (20 March 2002). "Chandra Detection of a Type II Quasar at z = 3.288". The Astrophysical Journal. 568 (1): 71–81. arXiv:astro-ph/0111513. Bibcode:2002ApJ...568...71S. doi:10.1086/338886. S2CID 119014942.
  91. ^ a b Stern, Daniel; Spinrad, Hyron; Eisenhardt, Peter; Bunker, Andrew J.; Dawson, Steve; Stanford, S. A.; Elston, Richard (20 April 2000). "Discovery of a Color-selected Quasar at z = 5.50". The Astrophysical Journal. 533 (2): L75–L78. arXiv:astro-ph/0002338. Bibcode:2000ApJ...533L..75S. doi:10.1086/312614. PMID 10770694. S2CID 28118881.
  92. ^ SDSS 98-3 Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Dec 1998
  93. ^ Fan, Xiaohui; et al. (January 2001). "High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. IV. Luminosity Function from the Fall Equatorial Stripe Sample". The Astronomical Journal. 121 (1): 54–65. arXiv:astro-ph/0008123. Bibcode:2001AJ....121...54F. doi:10.1086/318033. S2CID 119373674.
  94. ^ SIMBAD, Object query : SDSSp J033829.31+002156.3, QSO J0338+0021 -- Quasar
  95. ^ Henry Fountain (15 December 1998). "Observatory: Finding Distant Quasars". The New York Times. p. F5.
  96. ^ John Noble Wilford (20 October 1988). "Peering Back in Time, Astronomers Glimpse Galaxies Aborning". The New York Times. p. F1.
  97. ^ Smith, J. D; et al. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4". The Astronomical Journal. 108: 1147. Bibcode:1994AJ....108.1147S. doi:10.1086/117143.
  98. ^ New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
  99. ^ FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Archived 2009-09-12 at the Wayback Machine 8 December 1998
  100. ^ a b Hook, I. M; McMahon, R. G (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.010". Monthly Notices of the Royal Astronomical Society. 294 (1): L7–L12. arXiv:astro-ph/9801026. Bibcode:1998MNRAS.294L...7H. doi:10.1046/j.1365-8711.1998.01368.x.
  101. ^ a b c d e Turner, Edwin L (1991). "Quasars and galaxy formation. I - the Z greater than 4 objects". The Astronomical Journal. 101: 5. Bibcode:1991AJ....101....5T. doi:10.1086/115663.
  102. ^ SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
  103. ^ Cowie, Lennox L (1991). "Young Galaxies". Annals of the New York Academy of Sciences. 647 (1 Texas/ESO-Cer): 31–41. Bibcode:1991NYASA.647...31C. doi:10.1111/j.1749-6632.1991.tb32157.x. S2CID 222074763.
  104. ^ a b The New York Times, Peering to Edge of Time, Scientists Are Astonished, 20 November 1989
  105. ^ a b c Warren, S. J; Hewett, P. C; Osmer, P. S; Irwin, M. J (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature. 330 (6147): 453. Bibcode:1987Natur.330..453W. doi:10.1038/330453a0. S2CID 4352819.
  106. ^ Levshakov, S. A (1989). "Absorption spectra of quasars". Astrophysics. 29 (2): 657–671. Bibcode:1988Ap.....29..657L. doi:10.1007/BF01005972. S2CID 122978350.
  107. ^ The New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, 14 January 1988
  108. ^ John Noble Wilford (10 May 1988). "Astronomers Peer Deeper Into Cosmo". The New York Times. p. C1.
  109. ^ SIMBAD, Object query : Q0000-26, QSO B0000-26 -- Quasar
  110. ^ a b c d Schmidt, Maarten; Schneider, Donald P; Gunn, James E (1987). "PC 0910 + 5625 - an optically selected quasar with a redshift of 4.04". The Astrophysical Journal. 321: L7. Bibcode:1987ApJ...321L...7S. doi:10.1086/184996.
  111. ^ SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
  112. ^ Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (8 January 1987). "First observation of a quasar with a redshift of 4". Nature. 325 (6100): 131–133. Bibcode:1987Natur.325..131W. doi:10.1038/325131a0. S2CID 4335291.; First observation of a quasar with a redshift of 4
  113. ^ SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
  114. ^ SIMBAD, Object query : Q1208+1011, QSO B1208+1011 -- Quasar
  115. ^ NewScientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
  116. ^ Orwell Astronomical Society (Ipswich) - OASI; Archived Astronomy News Items, 1972 - 1997 Archived 2009-09-12 at the Wayback Machine
  117. ^ SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 -- Quasar
  118. ^ a b OSU Big Ear, History of the OSU Radio Observatory
  119. ^ SIMBAD, Object query : OQ172, QSO B1442+101 -- Quasar
  120. ^ a b c QUASARS - THREE YEARS LATER, 1974 Archived 2009-09-12 at the Wayback Machine
  121. ^ "The Edge of Night". Time. 23 April 1973. Archived from the original on 14 December 2008.
  122. ^ SIMBAD, Object query : OH471, QSO B0642+449 -- Quasar
  123. ^ Warren, S J; Hewett, P C (1 August 1990). "The detection of high-redshift quasars". Reports on Progress in Physics. 53 (8): 1095–1135. Bibcode:1990RPPh...53.1095W. doi:10.1088/0034-4885/53/8/003.
  124. ^ Bahcall, John N; Oke, J. B (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". The Astrophysical Journal. 163: 235. Bibcode:1971ApJ...163..235B. doi:10.1086/150762.
  125. ^ a b c Lynds, R; Wills, D (1970). "The Unusually Large Redshift of 4C 05.34". Nature. 226 (5245): 532. Bibcode:1970Natur.226..532L. doi:10.1038/226532a0. PMID 16057373.
  126. ^ SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 -- Quasar
  127. ^ a b Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". The Astrophysical Journal. 154: L41. Bibcode:1968ApJ...154L..41B. doi:10.1086/180265.
  128. ^ Time Magazine, A Farther-Out Quasar, 7 April 1967
  129. ^ SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 -- Quasar
  130. ^ a b c d Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". The Astrophysical Journal. 147: 851. Bibcode:1967ApJ...147..851B. doi:10.1086/149072.
  131. ^ a b Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
  132. ^ SIMBAD, Object query : Q1116+12, 4C 12.39 -- Quasar
  133. ^ SIMBAD, Object query : Q0106+01, 4C 01.02 -- Quasar
  134. ^ Malcolm S. Longair (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press. p. 7. ISBN 978-0-521-47436-8.
  135. ^ Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". The Astrophysical Journal. 141: 1295. Bibcode:1965ApJ...141.1295S. doi:10.1086/148217.
  136. ^ Ivor Robinson; Alfred Schild; E. L. Schucking (eds.). "Introduction: The Discovery of Radio Galaxies and Quasars". Proceedings of the First Texas Symposium on Relativistic Astrophysics. The University of Chicago.
  137. ^ a b Schmidt, Maarten; Matthews, Thomas A (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". The Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
  138. ^ Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". In Ivor Robinson; Alfred Schild; E.L. Schucking (eds.). Quasi-Stellar Sources and Gravitational Collapse, Proceedings of the 1st Texas Symposium on Relativistic Astrophysics. University of Chicago Press. p. 269. Bibcode:1965qssg.conf..269S.
  139. ^ Schneider, Donald P; Van Gorkom, J. H; Schmidt, Maarten; Gunn, James E (1992). "Radio properties of optically selected high-redshift quasars. I - VLA observations of 22 quasars at 6 CM". The Astronomical Journal. 103: 1451. Bibcode:1992AJ....103.1451S. doi:10.1086/116159.
  140. ^ "Finding the Fastest Galaxy: 76,000 Miles per Second". Time. 10 April 1964.
  141. ^ Greenstein, Jesse L; Matthews, Thomas A (1963). "Red-Shift of the Unusual Radio Source: 3C 48". Nature. 197 (4872): 1041. Bibcode:1963Natur.197.1041G. doi:10.1038/1971041a0. S2CID 4193798.
  142. ^ a b "1961 May 12 meeting of the Royal Astronomical Society". The Observatory. 81: 113–118. 1961. Bibcode:1961Obs....81..113.
  143. ^ a b P., Varshni, Y. (March 1979). "No redshift in 3C 295". Bulletin of the American Astronomical Society. 11: 458. Bibcode:1979BAAS...11..458V.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  144. ^ The Origin of Matter Part 4
  145. ^ Wolf, Christian; et al. (2018). "Discovery of the Most Ultra-Luminous QSO Using GAIA, Sky Mapper, and WISE". Publications of the Astronomical Society of Australia. 35: e024. arXiv:1805.04317. Bibcode:2018PASA...35...24W. doi:10.1017/pasa.2018.22. S2CID 55363916.
  146. ^ Bachev, R; Strigachev, A; Semkov, E (2005). "Short-term optical variability of high-redshift QSO's". Monthly Notices of the Royal Astronomical Society. 358 (3): 774–780. arXiv:astro-ph/0412149. Bibcode:2005MNRAS.358..774B. doi:10.1111/j.1365-2966.2005.08708.x. S2CID 16843880.
  147. ^ Kuhn, O; Bechtold, J; Cutri, R; Elvis, M; Rieke, M (1995). "The spectral energy distribution of the z = 3 quasar: HS 1946+7658". The Astrophysical Journal. 438: 643. Bibcode:1995ApJ...438..643K. doi:10.1086/175107.
  148. ^ Pâris, Isabelle; et al. (2012). "The Sloan Digital Sky Survey quasar catalog: Ninth data release". Astronomy & Astrophysics. 548: A66. arXiv:1210.5166. Bibcode:2012A&A...548A..66P. doi:10.1051/0004-6361/201220142. S2CID 119304969.
  149. ^ Stern, Jonathan; Hennawi, Joseph F; Pott, Jörg-Uwe (2015). "Spatially Resolving the Kinematics of the <100 μas Quasar Broad Line Region using Spectroastrometry". The Astrophysical Journal. 804 (1): 57. arXiv:1502.07767. Bibcode:2015ApJ...804...57S. doi:10.1088/0004-637X/804/1/57. S2CID 118482601.
  150. ^ a b Eisenhardt, Peter R. M; et al. (2012). "The First Hyper-Luminous Infrared Galaxy Discovered by WISE". The Astrophysical Journal. 755 (2): 173. arXiv:1208.5517. Bibcode:2012ApJ...755..173E. doi:10.1088/0004-637X/755/2/173. S2CID 35487945.
  151. ^ Wu, Xue-Bing; et al. (2015). "An ultra-luminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30". Nature. 518 (7540): 512–515. arXiv:1502.07418. Bibcode:2015Natur.518..512W. doi:10.1038/nature14241. PMID 25719667. S2CID 4455954.
  152. ^ Stepanian, J. A.; Green, R. F.; Foltz, C. B.; Chaffee, F.; Chavushyan, V. H.; Lipovetsky, V. A.; Erastova, L. K. (December 2001). "Spectroscopy and Photometry of Stellar Objects from the Second Byurakan Survey". The Astronomical Journal. 122 (6): 3361–3382. Bibcode:2001AJ....122.3361S. doi:10.1086/324460.
  153. ^ Onken, Christopher A.; Lai, Samuel; Wolf, Christian; Lucy, Adrian B.; Hon, Wei Jeat; Tisserand, Patrick; Sokoloski, Jennifer L.; Luna, Gerardo J. M.; Manick, Rajeev; Fan, Xiaohui; Bian, Fuyan (8 June 2022). "Discovery of the most luminous quasar of the last 9 Gyr". Publications of the Astronomical Society of Australia. 39. arXiv:2206.04204. Bibcode:2022PASA...39...37O. doi:10.1017/pasa.2022.36.
  154. ^ Schneider, Donald P; et al. (2010). "The Sloan Digital Sky Survey Quasar Catalog V. Seventh Data Release". The Astronomical Journal. 139 (6): 2360–2373. arXiv:1004.1167. Bibcode:2010AJ....139.2360S. doi:10.1088/0004-6256/139/6/2360. S2CID 118367130.
  155. ^ Schneider, Donald P.; et al. (July 2007). "The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release". The Astronomical Journal. 134 (1): 102–117. arXiv:0704.0806. Bibcode:2007AJ....134..102S. doi:10.1086/518474. S2CID 14359163.
  156. ^ Elvis, Martin; Matsuoka, M; Siemiginowska, A; Fiore, F; Mihara, T; Brinkmann, W (1994). "An ASCA GIS spectrum of S5 0014+813 AT z = 3.384". The Astrophysical Journal. 436: L55. Bibcode:1994ApJ...436L..55E. doi:10.1086/187631.
  157. ^ Wu, Xue-Bing; et al. (2010). "A very bright i=16.44 quasar in the 'redshift desert' discovered by LAMOST". Research in Astronomy and Astrophysics. 10 (8): 737. arXiv:1005.5499. Bibcode:2010RAA....10..737W. doi:10.1088/1674-4527/10/8/003. S2CID 118576463.
edit