The Ishimori equation is a partial differential equation proposed by the Japanese mathematician Ishimori (1984). Its interest is as the first example of a nonlinear spin-one field model in the plane that is integrable (Sattinger, Tracy & Venakides 1991, p. 78).

Equation

edit

The Ishimori equation has the form

  (1a)
  (1b)

Lax representation

edit

The Lax representation

  (2)

of the equation is given by

  (3a)
  (3b)

Here

  (4)

the   are the Pauli matrices and   is the identity matrix.

Reductions

edit

The Ishimori equation admits an important reduction: in 1+1 dimensions it reduces to the continuous classical Heisenberg ferromagnet equation (CCHFE). The CCHFE is integrable.

Equivalent counterpart

edit

The equivalent counterpart of the Ishimori equation is the Davey-Stewartson equation.

See also

edit

References

edit
  • Gutshabash, E.Sh. (2003), "Generalized Darboux transform in the Ishimori magnet model on the background of spiral structures", JETP Letters, 78 (11): 740–744, arXiv:nlin/0409001, Bibcode:2003JETPL..78..740G, doi:10.1134/1.1648299, S2CID 16905805
  • Ishimori, Yuji (1984), "Multi-vortex solutions of a two-dimensional nonlinear wave equation", Prog. Theor. Phys., 72 (1): 33–37, Bibcode:1984PThPh..72...33I, doi:10.1143/PTP.72.33, MR 0760959
  • Konopelchenko, B.G. (1993), Solitons in multidimensions, World Scientific, ISBN 978-981-02-1348-0
  • Martina, L.; Profilo, G.; Soliani, G.; Solombrino, L. (1994), "Nonlinear excitations in a Hamiltonian spin-field model in 2+1 dimensions", Phys. Rev. B, 49 (18): 12915–12922, Bibcode:1994PhRvB..4912915M, doi:10.1103/PhysRevB.49.12915, PMID 10010201
  • Sattinger, David H.; Tracy, C. A.; Venakides, S., eds. (1991), Inverse Scattering and Applications, Contemporary Mathematics, vol. 122, Providence, RI: American Mathematical Society, doi:10.1090/conm/122, ISBN 0-8218-5129-2, MR 1135850
  • Sung, Li-yeng (1996), "The Cauchy problem for the Ishimori equation", Journal of Functional Analysis, 139: 29–67, doi:10.1006/jfan.1996.0078
edit