Imre Bárány (Mátyásföld, Budapest, 7 December 1947) is a Hungarian mathematician, working in combinatorics and discrete geometry. He works at the Rényi Mathematical Institute of the Hungarian Academy of Sciences, and has a part-time appointment at University College London.
Notable results
edit- He gave a surprisingly simple alternative proof of László Lovász's theorem on Kneser graphs.[1]
- He gave a new proof of the Borsuk–Ulam theorem.[1]
- Bárány gave a colored version of Carathéodory's theorem.[1]
- He solved an old problem of James Joseph Sylvester[2] on the probability of random point sets in convex position.[3]
- With Van H. Vu proved a central limit theorem on random points in convex bodies.[1]
- With Zoltán Füredi he gave an algorithm for mental poker.[1]
- With Füredi he proved that no deterministic polynomial time algorithm determines the volume of convex bodies in dimension d within a multiplicative error dd.
- With Füredi and János Pach he proved the following six circle conjecture of László Fejes Tóth: if in a planar circle packing each circle is tangent to at least 6 other circles, then either it is the hexagonal system of circles with identical radii, or there are circles with arbitrarily small radius.
Career
editBárány received the Mathematical Prize (now Paul Erdős Prize) of the Hungarian Academy of Sciences in 1985. He was an invited speaker at the Combinatorics session of the International Congress of Mathematicians, in Beijing, 2002.[4] He was an Erdős Lecturer at Hebrew University of Jerusalem in 2004. He was elected a corresponding (2010), full (2016) member of the Hungarian Academy of Sciences.[5] In 2012 he became a fellow of the American Mathematical Society.[6] Since 2021, he is a member of the Academia Europaea[7]
He is an editor-in-chief for the journal Combinatorica,[8] and an Editorial Board member for Mathematika[9] and the Online Journal of Analytic Combinatorics".[10] He is area editor of the journal Mathematics of Operations Research.[11]
References
edit- ^ a b c d e "DBLP Bibliography". Universitat Trier. Archived from the original on 28 March 2012. Retrieved 29 January 2010.
- ^ J. J. Sylvester, Problem 1491. The Educational Times, April, 1864, London
- ^ Bárány, Imre, Sylvester's question: the probability that n points are in convex position. Annals of Probability, vol. 27 (1999), no. 4, pp. 2020–2034
- ^ Invited Speakers for ICM2002, Notices of the American Mathematical Society, vol 48 (2001), no. 11, pp. 1343–1345
- ^ "Köztestületi tagok".
- ^ List of Fellows of the American Mathematical Society, retrieved 2012-11-03.
- ^ "Academy of Europe: B%C3%A1r%C3%A1ny Imre".
- ^ Editorial Board, Combinatorica. Accessed April 22, 2021
- ^ Editorial Board Archived 2009-11-25 at the Wayback Machine, Mathematika, London Mathematical Society. Accessed January 23, 2010.
- ^ Editorial Board, Online Journal of Analytic Combinatorics. Accessed January 23, 2010.
- ^ Area editors Archived 2010-04-07 at the Wayback Machine, Mathematics of Operations Research. Accessed April 5, 2010.
External links
edit- Imre Bárány at the Mathematics Genealogy Project
- "Personal webpage". Mathematical Institute of the Hungarian Academy of Sciences.
- "Personal webpage". Department of Mathematics, University College London. Archived from the original on 2010-03-14.