HD 44594 is a star in the southern constellation Puppis. It has an apparent visual magnitude of 6.64, so it can be seen with the naked eye from the southern hemisphere under good viewing conditions. Based upon parallax measurements, it is located at a distance of 85 light-years (26 parsecs) from the Earth, giving it an absolute magnitude of 4.56.[4]
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Puppis |
Right ascension | 06h 20m 06.13481s[1] |
Declination | −48° 44′ 27.9261″[1] |
Apparent magnitude (V) | 6.64[2] |
Characteristics | |
Spectral type | G1.5V[3] |
U−B color index | +0.20[2] |
B−V color index | +0.66[2] |
Astrometry | |
Radial velocity (Rv) | +59.1[4] km/s |
Proper motion (μ) | RA: +234.059[1] mas/yr Dec.: −266.258[1] mas/yr |
Parallax (π) | 38.3524 ± 0.0150 mas[1] |
Distance | 85.04 ± 0.03 ly (26.07 ± 0.01 pc) |
Absolute magnitude (MV) | 4.56[4] |
Details | |
Mass | 1.08[5] M☉ |
Radius | 1.2[1] R☉ |
Luminosity | 1.3[1] L☉ |
Surface gravity (log g) | 4.38[6] cgs |
Temperature | 5,840[6] K |
Metallicity [Fe/H] | +0.15[6] dex |
Rotational velocity (v sin i) | 4.4[7] km/s |
Age | 4.1[5] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Measurement of the star's spectrum show it to match a stellar classification of G1.5V,[3] which is close to the Sun's spectral class of G2V. In the wavelength range 3,250–8,750 Â, the energy emission of this star is very similar to the Sun, and thus it is considered a solar analog.[9] The luminosity class 'V' means this is a main sequence star that is generating energy through the thermonuclear fusion of hydrogen at its core. The effective temperature of the outer envelope of HD 44594 is 5,840 K,[6] which is giving it the characteristic yellow hue of a G-type star.[10]
This star has about 108%[5] of the Sun's mass and is about the same radius as the Sun.[1] It may be slightly younger than the Sun with an estimated age of 4.1 billion years.[5] the abundance of elements other than hydrogen or helium, what astronomers term the star's metallicity, is 41% higher than in the Sun.[11] The projected rotational velocity of the star is 4.4 km/s,[7] which gives the minimum azimuthal velocity along the star's equator.
This star has been examined in the infrared using the Spitzer Space Telescope. However, no excess emission was discovered, which might otherwise have indicated the presence of a circumstellar debris disk of orbiting dust.[12] Gaia Data Release 3 shows a faint companion about 7″ away. The companion is 9 magnitudes fainter than the G-type star with an almost-identical parallax and common proper motion.[13]
References
edit- ^ a b c d e f g h Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ a b c Przybylski, A.; Kennedy, P. M. (1965), "Radial velocities and three-colour photometry of 166 southern stars", Monthly Notices of the Royal Astronomical Society, 131: 95–104, Bibcode:1965MNRAS.131...95P, doi:10.1093/mnras/131.1.95
- ^ a b Gray, R. O.; et al. (October 2003), "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.", The Astronomical Journal, 126 (4): 2048–2059, arXiv:astro-ph/0308182, Bibcode:2003AJ....126.2048G, doi:10.1086/378365, S2CID 119417105
- ^ a b c Nordström, B.; et al. (May 2004), "The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs", Astronomy and Astrophysics, 418 (3): 989–1019, arXiv:astro-ph/0405198, Bibcode:2004A&A...418..989N, doi:10.1051/0004-6361:20035959, S2CID 11027621
- ^ a b c d Sousa, S. G.; Fernandes, J.; Israelian, G.; Santos, N. C. (March 2010), "Higher depletion of lithium in planet host stars: no age and mass effect", Astronomy and Astrophysics, 512: L5, arXiv:1003.0405, Bibcode:2010A&A...512L...5S, doi:10.1051/0004-6361/201014125, S2CID 118646949
- ^ a b c d Sousa, S. G.; et al. (August 2008), "Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes", Astronomy and Astrophysics, 487 (1): 373–381, arXiv:0805.4826, Bibcode:2008A&A...487..373S, doi:10.1051/0004-6361:200809698, S2CID 18173201
- ^ a b Schröder, C.; Reiners, Ansgar; Schmitt, Jürgen H. M. M. (January 2009), "Ca II HK emission in rapidly rotating stars. Evidence for an onset of the solar-type dynamo" (PDF), Astronomy and Astrophysics, 493 (3): 1099–1107, Bibcode:2009A&A...493.1099S, doi:10.1051/0004-6361:200810377[permanent dead link ]
- ^ "LTT 2525 – High proper-motion Star", SIMBAD, Centre de Données astronomiques de Strasbourg, retrieved 2008-05-16
- ^ Hardorp, J.; Tueg, H.; Schmidt-Kaler, T. (March 1982), "The sun among the stars. VI – The solar analog HD 44594", Astronomy and Astrophysics, 107 (2): 311–312, Bibcode:1982A&A...107..311H
- ^ "The Colour of Stars", Australia Telescope, Outreach and Education, Commonwealth Scientific and Industrial Research Organisation, December 21, 2004, archived from the original on March 18, 2012, retrieved 2012-01-16
- ^ For a metallicity of [Fe/H] = +0.15 dex, the proportion of heavier elements relative to the abundance in the Sun is given by:
- 10+0.15 = 1.4
- ^ Lawler, S. M.; et al. (November 2009), "Explorations Beyond the Snow Line: Spitzer/IRS Spectra of Debris Disks Around Solar-type Stars", The Astrophysical Journal, 705 (1): 89–111, arXiv:0909.0058, Bibcode:2009ApJ...705...89L, doi:10.1088/0004-637X/705/1/89, S2CID 1272803
- ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.