Conjunction introduction (often abbreviated simply as conjunction and also called and introduction or adjunction)[1][2][3] is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof. It is the inference that if the proposition is true, and the proposition is true, then the logical conjunction of the two propositions and is true. For example, if it is true that "it is raining", and it is true that "the cat is inside", then it is true that "it is raining and the cat is inside". The rule can be stated:
Type | Rule of inference |
---|---|
Field | Propositional calculus |
Statement | If the proposition is true, and the proposition is true, then the logical conjunction of the two propositions and is true. |
Symbolic statement |
where the rule is that wherever an instance of "" and "" appear on lines of a proof, a "" can be placed on a subsequent line.
Formal notation
editThe conjunction introduction rule may be written in sequent notation:
where and are propositions expressed in some formal system, and is a metalogical symbol meaning that is a syntactic consequence if and are each on lines of a proof in some logical system;
References
edit- ^ Hurley, Patrick (1991). A Concise Introduction to Logic 4th edition. Wadsworth Publishing. pp. 346–51.
- ^ Copi, Irving M.; Cohen, Carl; McMahon, Kenneth (2014). Introduction to Logic (14th ed.). Pearson. pp. 370, 620. ISBN 978-1-292-02482-0.
- ^ Moore, Brooke Noel; Parker, Richard (2015). "Deductive Arguments II Truth-Functional Logic". Critical Thinking (11th ed.). New York: McGraw Hill. p. 311. ISBN 978-0-07-811914-9.