Complex analytic variety

In mathematics, particular differential geometry and complex geometry, a complex analytic variety[note 1] or complex analytic space is a generalization of a complex manifold that allows the presence of singularities. Complex analytic varieties are locally ringed spaces that are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.

Definition

edit

Denote the constant sheaf on a topological space with value   by  . A  -space is a locally ringed space  , whose structure sheaf is an algebra over  .

Choose an open subset   of some complex affine space  , and fix finitely many holomorphic functions   in  . Let   be the common vanishing locus of these holomorphic functions, that is,  . Define a sheaf of rings on   by letting   be the restriction to   of  , where   is the sheaf of holomorphic functions on  . Then the locally ringed  -space   is a local model space.

A complex analytic variety is a locally ringed  -space   that is locally isomorphic to a local model space.

Morphisms of complex analytic varieties are defined to be morphisms of the underlying locally ringed spaces, they are also called holomorphic maps. A structure sheaf may have nilpotent element,[1] and also, when the complex analytic space whose structure sheaf is reduced, then the complex analytic space is reduced, that is, the complex analytic space may not be reduced.

An associated complex analytic space (variety)   is such that;[1]

Let X be schemes finite type over  , and cover X with open affine subset   ( ) (Spectrum of a ring). Then each   is an algebra of finite type over  , and  . Where   are polynomial in  , which can be regarded as a holomorphic function on  . Therefore, their common zero of the set is the complex analytic subspace  . Here, scheme X obtained by glueing the data of the set  , and then the same data can be used to glueing the complex analytic space   into an complex analytic space  , so we call   a associated complex analytic space with X. The complex analytic space X is reduced if and only if the associated complex analytic space   reduced.[2]

See also

edit
  • Algebraic variety - Roughly speaking, an (complex) analytic variety is a zero locus of a set of an (complex) analytic function, while an algebraic variety is a zero locus of a set of a polynomial function and allowing singular point.
  • Analytic space – locally ringed space glued together from analytic varieties
  • Complex algebraic variety
  • GAGA – Two closely related mathematical subjects
  • Rigid analytic space – An analogue of a complex analytic space over a nonarchimedean field

Note

edit
  1. ^ a b Hartshorne 1977, p. 439.
  2. ^ Grothendieck & Raynaud (2002) (SGA 1 §XII. Proposition 2.1.)

Annotation

edit
  1. ^ Complex analytic variety (or just variety) is sometimes required to be irreducible and (or) reduced

References

edit

Future reading

edit
edit