This mathematics -related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras , published in Russian in 1963.[ 1] It complements the article on Lie algebra in the area of abstract algebra .
An English version and review of this classification was published by Popovych et al.[ 2] in 2003.
Mubarakzyanov's Classification
edit
Let
g
n
{\displaystyle {\mathfrak {g}}_{n}}
be
n
{\displaystyle n}
-dimensional Lie algebra over the field of real numbers
with generators
e
1
,
…
,
e
n
{\displaystyle e_{1},\dots ,e_{n}}
,
n
≤
4
{\displaystyle n\leq 4}
.[clarification needed ] For each algebra
g
{\displaystyle {\mathfrak {g}}}
we adduce only non-zero commutators between basis elements.
g
1
{\displaystyle {\mathfrak {g}}_{1}}
, abelian .
2
g
1
{\displaystyle 2{\mathfrak {g}}_{1}}
, abelian
R
2
{\displaystyle \mathbb {R} ^{2}}
;
g
2.1
{\displaystyle {\mathfrak {g}}_{2.1}}
, solvable
a
f
f
(
1
)
=
{
(
a
b
0
0
)
:
a
,
b
∈
R
}
{\displaystyle {\mathfrak {aff}}(1)=\left\{{\begin{pmatrix}a&b\\0&0\end{pmatrix}}\,:\,a,b\in \mathbb {R} \right\}}
,
[
e
1
,
e
2
]
=
e
1
.
{\displaystyle [e_{1},e_{2}]=e_{1}.}
3
g
1
{\displaystyle 3{\mathfrak {g}}_{1}}
, abelian, Bianchi I ;
g
2.1
⊕
g
1
{\displaystyle {\mathfrak {g}}_{2.1}\oplus {\mathfrak {g}}_{1}}
, decomposable solvable, Bianchi III;
g
3.1
{\displaystyle {\mathfrak {g}}_{3.1}}
, Heisenberg–Weyl algebra, nilpotent, Bianchi II,
[
e
2
,
e
3
]
=
e
1
;
{\displaystyle [e_{2},e_{3}]=e_{1};}
g
3.2
{\displaystyle {\mathfrak {g}}_{3.2}}
, solvable, Bianchi IV,
[
e
1
,
e
3
]
=
e
1
,
[
e
2
,
e
3
]
=
e
1
+
e
2
;
{\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{1}+e_{2};}
g
3.3
{\displaystyle {\mathfrak {g}}_{3.3}}
, solvable, Bianchi V,
[
e
1
,
e
3
]
=
e
1
,
[
e
2
,
e
3
]
=
e
2
;
{\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{2};}
g
3.4
{\displaystyle {\mathfrak {g}}_{3.4}}
, solvable, Bianchi VI, Poincaré algebra
p
(
1
,
1
)
{\displaystyle {\mathfrak {p}}(1,1)}
when
α
=
−
1
{\displaystyle \alpha =-1}
,
[
e
1
,
e
3
]
=
e
1
,
[
e
2
,
e
3
]
=
α
e
2
,
−
1
≤
α
<
1
,
α
≠
0
;
{\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=\alpha e_{2},\quad -1\leq \alpha <1,\quad \alpha \neq 0;}
g
3.5
{\displaystyle {\mathfrak {g}}_{3.5}}
, solvable, Bianchi VII,
[
e
1
,
e
3
]
=
β
e
1
−
e
2
,
[
e
2
,
e
3
]
=
e
1
+
β
e
2
,
β
≥
0
;
{\displaystyle [e_{1},e_{3}]=\beta e_{1}-e_{2},\quad [e_{2},e_{3}]=e_{1}+\beta e_{2},\quad \beta \geq 0;}
g
3.6
{\displaystyle {\mathfrak {g}}_{3.6}}
, simple, Bianchi VIII,
s
l
(
2
,
R
)
,
{\displaystyle {\mathfrak {sl}}(2,\mathbb {R} ),}
[
e
1
,
e
2
]
=
e
1
,
[
e
2
,
e
3
]
=
e
3
,
[
e
1
,
e
3
]
=
2
e
2
;
{\displaystyle [e_{1},e_{2}]=e_{1},\quad [e_{2},e_{3}]=e_{3},\quad [e_{1},e_{3}]=2e_{2};}
g
3.7
{\displaystyle {\mathfrak {g}}_{3.7}}
, simple, Bianchi IX,
s
o
(
3
)
,
{\displaystyle {\mathfrak {so}}(3),}
[
e
2
,
e
3
]
=
e
1
,
[
e
3
,
e
1
]
=
e
2
,
[
e
1
,
e
2
]
=
e
3
.
{\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{3},e_{1}]=e_{2},\quad [e_{1},e_{2}]=e_{3}.}
Algebra
g
3.3
{\displaystyle {\mathfrak {g}}_{3.3}}
can be considered as an extreme case of
g
3.5
{\displaystyle {\mathfrak {g}}_{3.5}}
, when
β
→
∞
{\displaystyle \beta \rightarrow \infty }
, forming contraction of Lie algebra.
Over the field
C
{\displaystyle {\mathbb {C} }}
algebras
g
3.5
{\displaystyle {\mathfrak {g}}_{3.5}}
,
g
3.7
{\displaystyle {\mathfrak {g}}_{3.7}}
are isomorphic to
g
3.4
{\displaystyle {\mathfrak {g}}_{3.4}}
and
g
3.6
{\displaystyle {\mathfrak {g}}_{3.6}}
, respectively.
4
g
1
{\displaystyle 4{\mathfrak {g}}_{1}}
, abelian;
g
2.1
⊕
2
g
1
{\displaystyle {\mathfrak {g}}_{2.1}\oplus 2{\mathfrak {g}}_{1}}
, decomposable solvable,
[
e
1
,
e
2
]
=
e
1
;
{\displaystyle [e_{1},e_{2}]=e_{1};}
2
g
2.1
{\displaystyle 2{\mathfrak {g}}_{2.1}}
, decomposable solvable,
[
e
1
,
e
2
]
=
e
1
[
e
3
,
e
4
]
=
e
3
;
{\displaystyle [e_{1},e_{2}]=e_{1}\quad [e_{3},e_{4}]=e_{3};}
g
3.1
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.1}\oplus {\mathfrak {g}}_{1}}
, decomposable nilpotent,
[
e
2
,
e
3
]
=
e
1
;
{\displaystyle [e_{2},e_{3}]=e_{1};}
g
3.2
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.2}\oplus {\mathfrak {g}}_{1}}
, decomposable solvable,
[
e
1
,
e
3
]
=
e
1
,
[
e
2
,
e
3
]
=
e
1
+
e
2
;
{\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{1}+e_{2};}
g
3.3
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.3}\oplus {\mathfrak {g}}_{1}}
, decomposable solvable,
[
e
1
,
e
3
]
=
e
1
,
[
e
2
,
e
3
]
=
e
2
;
{\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{2};}
g
3.4
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.4}\oplus {\mathfrak {g}}_{1}}
, decomposable solvable,
[
e
1
,
e
3
]
=
e
1
,
[
e
2
,
e
3
]
=
α
e
2
,
−
1
≤
α
<
1
,
α
≠
0
;
{\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=\alpha e_{2},\quad -1\leq \alpha <1,\quad \alpha \neq 0;}
g
3.5
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.5}\oplus {\mathfrak {g}}_{1}}
, decomposable solvable,
[
e
1
,
e
3
]
=
β
e
1
−
e
2
[
e
2
,
e
3
]
=
e
1
+
β
e
2
,
β
≥
0
;
{\displaystyle [e_{1},e_{3}]=\beta e_{1}-e_{2}\quad [e_{2},e_{3}]=e_{1}+\beta e_{2},\quad \beta \geq 0;}
g
3.6
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.6}\oplus {\mathfrak {g}}_{1}}
, unsolvable,
[
e
1
,
e
2
]
=
e
1
,
[
e
2
,
e
3
]
=
e
3
,
[
e
1
,
e
3
]
=
2
e
2
;
{\displaystyle [e_{1},e_{2}]=e_{1},\quad [e_{2},e_{3}]=e_{3},\quad [e_{1},e_{3}]=2e_{2};}
g
3.7
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.7}\oplus {\mathfrak {g}}_{1}}
, unsolvable,
[
e
1
,
e
2
]
=
e
3
,
[
e
2
,
e
3
]
=
e
1
,
[
e
3
,
e
1
]
=
e
2
;
{\displaystyle [e_{1},e_{2}]=e_{3},\quad [e_{2},e_{3}]=e_{1},\quad [e_{3},e_{1}]=e_{2};}
g
4.1
{\displaystyle {\mathfrak {g}}_{4.1}}
, indecomposable nilpotent,
[
e
2
,
e
4
]
=
e
1
,
[
e
3
,
e
4
]
=
e
2
;
{\displaystyle [e_{2},e_{4}]=e_{1},\quad [e_{3},e_{4}]=e_{2};}
g
4.2
{\displaystyle {\mathfrak {g}}_{4.2}}
, indecomposable solvable,
[
e
1
,
e
4
]
=
β
e
1
,
[
e
2
,
e
4
]
=
e
2
,
[
e
3
,
e
4
]
=
e
2
+
e
3
,
β
≠
0
;
{\displaystyle [e_{1},e_{4}]=\beta e_{1},\quad [e_{2},e_{4}]=e_{2},\quad [e_{3},e_{4}]=e_{2}+e_{3},\quad \beta \neq 0;}
g
4.3
{\displaystyle {\mathfrak {g}}_{4.3}}
, indecomposable solvable,
[
e
1
,
e
4
]
=
e
1
,
[
e
3
,
e
4
]
=
e
2
;
{\displaystyle [e_{1},e_{4}]=e_{1},\quad [e_{3},e_{4}]=e_{2};}
g
4.4
{\displaystyle {\mathfrak {g}}_{4.4}}
, indecomposable solvable,
[
e
1
,
e
4
]
=
e
1
,
[
e
2
,
e
4
]
=
e
1
+
e
2
,
[
e
3
,
e
4
]
=
e
2
+
e
3
;
{\displaystyle [e_{1},e_{4}]=e_{1},\quad [e_{2},e_{4}]=e_{1}+e_{2},\quad [e_{3},e_{4}]=e_{2}+e_{3};}
g
4.5
{\displaystyle {\mathfrak {g}}_{4.5}}
, indecomposable solvable,
[
e
1
,
e
4
]
=
α
e
1
,
[
e
2
,
e
4
]
=
β
e
2
,
[
e
3
,
e
4
]
=
γ
e
3
,
α
β
γ
≠
0
;
{\displaystyle [e_{1},e_{4}]=\alpha e_{1},\quad [e_{2},e_{4}]=\beta e_{2},\quad [e_{3},e_{4}]=\gamma e_{3},\quad \alpha \beta \gamma \neq 0;}
g
4.6
{\displaystyle {\mathfrak {g}}_{4.6}}
, indecomposable solvable,
[
e
1
,
e
4
]
=
α
e
1
,
[
e
2
,
e
4
]
=
β
e
2
−
e
3
,
[
e
3
,
e
4
]
=
e
2
+
β
e
3
,
α
>
0
;
{\displaystyle [e_{1},e_{4}]=\alpha e_{1},\quad [e_{2},e_{4}]=\beta e_{2}-e_{3},\quad [e_{3},e_{4}]=e_{2}+\beta e_{3},\quad \alpha >0;}
g
4.7
{\displaystyle {\mathfrak {g}}_{4.7}}
, indecomposable solvable,
[
e
2
,
e
3
]
=
e
1
,
[
e
1
,
e
4
]
=
2
e
1
,
[
e
2
,
e
4
]
=
e
2
,
[
e
3
,
e
4
]
=
e
2
+
e
3
;
{\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{1},e_{4}]=2e_{1},\quad [e_{2},e_{4}]=e_{2},\quad [e_{3},e_{4}]=e_{2}+e_{3};}
g
4.8
{\displaystyle {\mathfrak {g}}_{4.8}}
, indecomposable solvable,
[
e
2
,
e
3
]
=
e
1
,
[
e
1
,
e
4
]
=
(
1
+
β
)
e
1
,
[
e
2
,
e
4
]
=
e
2
,
[
e
3
,
e
4
]
=
β
e
3
,
−
1
≤
β
≤
1
;
{\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{1},e_{4}]=(1+\beta )e_{1},\quad [e_{2},e_{4}]=e_{2},\quad [e_{3},e_{4}]=\beta e_{3},\quad -1\leq \beta \leq 1;}
g
4.9
{\displaystyle {\mathfrak {g}}_{4.9}}
, indecomposable solvable,
[
e
2
,
e
3
]
=
e
1
,
[
e
1
,
e
4
]
=
2
α
e
1
,
[
e
2
,
e
4
]
=
α
e
2
−
e
3
,
[
e
3
,
e
4
]
=
e
2
+
α
e
3
,
α
≥
0
;
{\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{1},e_{4}]=2\alpha e_{1},\quad [e_{2},e_{4}]=\alpha e_{2}-e_{3},\quad [e_{3},e_{4}]=e_{2}+\alpha e_{3},\quad \alpha \geq 0;}
g
4.10
{\displaystyle {\mathfrak {g}}_{4.10}}
, indecomposable solvable,
[
e
1
,
e
3
]
=
e
1
,
[
e
2
,
e
3
]
=
e
2
,
[
e
1
,
e
4
]
=
−
e
2
,
[
e
2
,
e
4
]
=
e
1
.
{\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{2},\quad [e_{1},e_{4}]=-e_{2},\quad [e_{2},e_{4}]=e_{1}.}
Algebra
g
4.3
{\displaystyle {\mathfrak {g}}_{4.3}}
can be considered as an extreme case of
g
4.2
{\displaystyle {\mathfrak {g}}_{4.2}}
, when
β
→
0
{\displaystyle \beta \rightarrow 0}
, forming contraction of Lie algebra.
Over the field
C
{\displaystyle {\mathbb {C} }}
algebras
g
3.5
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.5}\oplus {\mathfrak {g}}_{1}}
,
g
3.7
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.7}\oplus {\mathfrak {g}}_{1}}
,
g
4.6
{\displaystyle {\mathfrak {g}}_{4.6}}
,
g
4.9
{\displaystyle {\mathfrak {g}}_{4.9}}
,
g
4.10
{\displaystyle {\mathfrak {g}}_{4.10}}
are isomorphic to
g
3.4
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.4}\oplus {\mathfrak {g}}_{1}}
,
g
3.6
⊕
g
1
{\displaystyle {\mathfrak {g}}_{3.6}\oplus {\mathfrak {g}}_{1}}
,
g
4.5
{\displaystyle {\mathfrak {g}}_{4.5}}
,
g
4.8
{\displaystyle {\mathfrak {g}}_{4.8}}
,
2
g
2.1
{\displaystyle {2{\mathfrak {g}}}_{2.1}}
, respectively.