Chlorobaculum tepidum, previously known as Chlorobium tepidum,[1] is an anaerobic, thermophilic green sulfur bacteria first isolated from New Zealand.[2] Its cells are gram-negative and non-motile rods of variable length. They contain chlorosomes [3] and bacteriochlorophyll a and c.[4]
Chlorobaculum tepidum | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: | C. tepidum
|
Binomial name | |
Chlorobaculum tepidum (Wahlund et al. 1996) Imhoff 2003
| |
Synonyms | |
Chlorobium tepidum Wahlund et al. 1996 |
Natural habitat and environmental requirements
editLike other green sulfur bacteria C. tepidum requires light and specific compounds to perform anoxygenic photosynthesis.[3] C. tepidum differs from other green sulfur bacteria in that it cannot easily use H2 or Fe2+ as electron donors, relying on elemental sulfur, sulfide, and thiosulfate instead.[5][6][7] To fulfill their metabolic requirements, they reside primarily in anaerobic sulfur rich environments such as anaerobic levels of stratified lakes and lagoons, anaerobic levels of layered organic bacterial mats, and in hot springs where there is abundant sulfur.[7] C. tepidum and other green sulfur bacteria also play a large role within the carbon and sulfur cycles.[7] Within the sulfur cycle, they contribute to the oxidative branch by oxidizing reduced sulfur compounds.[8] Within anaerobic sediment layers C. tepidum is able to couple carbon and sulfur cycling in a metabolically favorable way.[8]
Photosynthetic mechanism
editAs it was mentioned before, C. tepidum performs anoxygenic photosynthesis. Within each cell there are 200–250 chlorosomes[3] that are attached to the cytoplasmic side of reaction centers inserted within the inner cell membrane.[3] The ellipsoidal shaped complexes act as light harvesting antenna to capture energy.[3] Within each chlorosome are 215,000 ± 80,000 bacteriochlorophyll C[4] that act as pigment molecules and absorb unique wavelengths of light relative to their color.[4] C. tepidum contains genes that play an important role in the methylation of the C-8 and C-12 carbons of bacteriochlorophyll C. This methylation allows for BChl C levels to fluctuate in response to a change in the availability of light, resulting in a high efficiency of light harvesting and allowing C. tepidum to survive in areas of very low light intensity.[9][10][11] Light energy is harvested by the chlorosomes and used in conjunction with H2, reduced sulfur compounds, or ferrous iron to preform redox reactions and provide energy to fix CO2 via the reverse tricarboxcylic acid cycle.[3]
Genome structure
editC. tepidum contains a genome that contains 2.15 Mbp, within there are a total of 2,337 genes (of these genes, there are 2,245 protein coding genes and 56 tRNA and rRNA coding genes).[12] It's synthesis of chlorophyll a and bacteriochlorophylls a and c make it a model organism used to elucidate the biosynthesis of bacteriochlorophylls c.[13] Present in the genome of C. tepidum are a multitude of genes that protect the bacterium against the presence of oxygen. The fact that such a large part of the genome is used to encode for protections against oxygen points to the possibility that C. tepidum spent a long period of its evolutionary history in proximity to oxygen, and therefore needed pathways that ensured that living in the presence of oxygen would not substantially harm the bacterium.[14][15] Several of its carotenoid metabolic pathways (including a novel lycopene cyclase) have similar counterparts in cyanobacteria.[16][17]
See also
editReferences
edit- ^ Imhoff J (2003). "Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna– Matthews–Olson protein) gene sequences" (PDF). International Journal of Systematic and Evolutionary Microbiology. 53 (Pt 4): 941–951. doi:10.1099/ijs.0.02403-0. PMID 12892110.
- ^ Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991). "A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov". Archives of Microbiology. 156 (2): 81–90. Bibcode:1991ArMic.156...81W. doi:10.1007/BF00290978. ISSN 0302-8933. S2CID 22133132.
- ^ a b c d e f Frigaard NU, Chew AG, Li H, Maresca JA, Bryant DA (2003). "Chlorobium Tepidum : Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence". Photosynthesis Research. 78 (2): 93–117. Bibcode:2003PhoRe..78...93F. doi:10.1023/B:PRES.0000004310.96189.b4. ISSN 0166-8595. PMID 16245042. S2CID 30218833.
- ^ a b c Montano GA, Bowen BP, LaBelle JT, Woodbury NW, al e (October 2003). "Characterization of Chlorobium tepidum chlorosomes: A calculation of bacteriochlorophyll c per chlorosome and oligomer modeling". Biophysical Journal. 85 (4): 2560–2565. Bibcode:2003BpJ....85.2560M. doi:10.1016/S0006-3495(03)74678-5. PMC 1303479. PMID 14507718. ProQuest 215720771.
- ^ Levy AT, Lee KH, Hanson TE (2016). Parales RE (ed.). "Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation". Applied and Environmental Microbiology. 82 (21): 6431–6439. Bibcode:2016ApEnM..82.6431L. doi:10.1128/AEM.02111-16. ISSN 0099-2240. PMC 5066360. PMID 27565613.
- ^ Kushkevych I, Procházka J, Gajdács M, Rittmann SK, Vítězová M (2021-06-15). "Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria". International Journal of Molecular Sciences. 22 (12): 6398. doi:10.3390/ijms22126398. ISSN 1422-0067. PMC 8232776. PMID 34203823.
- ^ a b c Li H, Jubelirer S, Garcia Costas AM, Frigaard NU, Bryant DA (2009). "Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species". Archives of Microbiology. 191 (11): 853–867. Bibcode:2009ArMic.191..853L. doi:10.1007/s00203-009-0514-7. ISSN 0302-8933. PMID 19784828. S2CID 8881227.
- ^ a b Rodriguez J, Hiras J, Hanson TE (2011). "Sulfite Oxidation in Chlorobaculum Tepidum". Frontiers in Microbiology. 2: 112. doi:10.3389/fmicb.2011.00112. ISSN 1664-302X. PMC 3119408. PMID 21747809.
- ^ Chew AG, Frigaard NU, Bryant DA (2007). "Bacteriochlorophyllide c C-8 2 and C-12 1 Methyltransferases Are Essential for Adaptation to Low Light in Chlorobaculum tepidum". Journal of Bacteriology. 189 (17): 6176–6184. doi:10.1128/JB.00519-07. ISSN 0021-9193. PMC 1951906. PMID 17586634.
- ^ Morgan-Kiss RM, Chan LK, Modla S, Weber TS, Warner M, Czymmek KJ, Hanson TE (2009-01-01). "Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability". Photosynthesis Research. 99 (1): 11–21. Bibcode:2009PhoRe..99...11M. doi:10.1007/s11120-008-9361-7. ISSN 1573-5079. PMID 18798007.
- ^ Shoji S, Mizoguchi T, Tamiaki H (2016). "In vitro self-assemblies of bacteriochlorophylls-c from Chlorobaculum tepidum and their supramolecular nanostructures". Journal of Photochemistry and Photobiology A: Chemistry. 331: 190–196. doi:10.1016/j.jphotochem.2015.11.003. ISSN 1010-6030.
- ^ Eisen JA, Nelson KE, Paulsen IT, et al. (July 2002). "The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium". Proceedings of the National Academy of Sciences of the United States of America. 99 (14): 9509–14. Bibcode:2002PNAS...99.9509E. doi:10.1073/pnas.132181499. PMC 123171. PMID 12093901.
- ^ N.-U. Frigaard, et al. (2006). B. Grimm, et al. (eds.). Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Vol. 25. Springer. 201–221.
- ^ Harada J, Mizoguchi T, Tsukatani Y, Yokono M, Tanaka A, Tamiaki H (2014). "Chlorophyllide a Oxidoreductase Works as One of the Divinyl Reductases Specifically Involved in Bacteriochlorophyll a Biosynthesis". Journal of Biological Chemistry. 289 (18): 12716–12726. doi:10.1074/jbc.m113.546739. ISSN 0021-9258. PMC 4007461. PMID 24637023.
- ^ Li H, Jubelirer S, Garcia Costas AM, Frigaard NU, Bryant DA (2009-11-01). "Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species". Archives of Microbiology. 191 (11): 853–867. Bibcode:2009ArMic.191..853L. doi:10.1007/s00203-009-0514-7. ISSN 1432-072X. PMID 19784828.
- ^ N.-U. Frigaard, et al. (2004). "Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum". Journal of Bacteriology. 186 (16): 5210–5220. doi:10.1128/jb.186.16.5210-5220.2004. PMC 490927. PMID 15292122.
- ^ J.A. Maresca, et al. (2005). A. van der Est, D. Bruce (eds.). Photosynthesis: Fundamental Aspects to Global Perspectives. Allen Press. pp. 884–886.
Further reading
edit- Frigaard NU, Voigt GD, Bryant DA (June 2002). "Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase". Journal of Bacteriology. 184 (12): 3368–76. doi:10.1128/jb.184.12.3368-3376.2002. PMC 135091. PMID 12029054.
- Wahlund TM, Madigan MT (January 1993). "Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum". Journal of Bacteriology. 175 (2): 474–8. doi:10.1128/jb.175.2.474-478.1993. PMC 196162. PMID 8093448.
External links
edit