In martingale theory, Émery topology is a topology on the space of semimartingales. The topology is used in financial mathematics. The class of stochastic integrals with general predictable integrands coincides with the closure of the set of all simple integrals.[1]

The topology was introduced in 1979 by the French mathematician Michel Émery.[2]

Definition

edit

Let   be a filtered probability space, where the filtration satisfies the usual conditions and  . Let   be the space of real semimartingales and   the space of simple predictable processes   with  .

We define

 

Then   with the metric   is a complete metric space and the induced topology is called Émery topology.[3][1]

References

edit
  1. ^ a b Kardaras, Constantinos (2013). "On the closure in the Emery topology of semimartingale wealth-process sets". Annals of Applied Probability. 23 (4): 1355–1376. arXiv:1108.0945. doi:10.1214/12-AAP872.
  2. ^ Émery, Michel (1979). "Une topologie sur l'espace des semimartingales". Séminaire de probabilités de Strasbourg. 13: 260–280.
  3. ^ De Donno, M.; Pratelli, M. (2005). "A theory of stochastic integration for bond markets". Annals of Applied Probability. 15 (4): 2773–2791. arXiv:math/0602532. doi:10.1214/105051605000000548.