A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, February 16, 2083,[1] with a magnitude of 0.9433. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of February 16, 2083 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.017 |
Magnitude | 0.9433 |
Maximum eclipse | |
Coordinates | 61°36′N 154°06′W / 61.6°N 154.1°W |
Times (UTC) | |
Greatest eclipse | 18:06:36 |
References | |
Saros | 151 (18 of 72) |
Catalog # (SE5000) | 9693 |
The partial solar eclipse will be visible for much of Hawaii and North America.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2083 February 16 at 15:53:58.1 UTC |
Greatest Eclipse | 2083 February 16 at 18:06:36.2 UTC |
Ecliptic Conjunction | 2083 February 16 at 18:17:55.8 UTC |
Equatorial Conjunction | 2083 February 16 at 19:02:03.3 UTC |
Last Penumbral External Contact | 2083 February 16 at 20:18:57.9 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.94327 |
Eclipse Obscuration | 0.90394 |
Gamma | 1.01701 |
Sun Right Ascension | 22h01m38.8s |
Sun Declination | -12°04'40.8" |
Sun Semi-Diameter | 16'11.4" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 21h59m56.3s |
Moon Declination | -11°12'50.5" |
Moon Semi-Diameter | 15'28.4" |
Moon Equatorial Horizontal Parallax | 0°56'47.2" |
ΔT | 108.1 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
February 2 Descending node (full moon) |
February 16 Ascending node (new moon) |
---|---|
Total lunar eclipse Lunar Saros 125 |
Partial solar eclipse Solar Saros 151 |
Related eclipses
editEclipses in 2083
edit- A total lunar eclipse on February 2.
- A partial solar eclipse on February 16.
- A partial solar eclipse on July 15.
- A total lunar eclipse on July 29.
- A partial solar eclipse on August 13.
Metonic
edit- Preceded by: Solar eclipse of May 1, 2079
- Followed by: Solar eclipse of December 6, 2086
Tzolkinex
edit- Preceded by: Solar eclipse of January 6, 2076
- Followed by: Solar eclipse of March 31, 2090
Half-Saros
edit- Preceded by: Lunar eclipse of February 11, 2074
- Followed by: Lunar eclipse of February 23, 2092
Tritos
edit- Preceded by: Solar eclipse of March 19, 2072
- Followed by: Solar eclipse of January 16, 2094
Solar Saros 151
edit- Preceded by: Solar eclipse of February 5, 2065
- Followed by: Solar eclipse of February 28, 2101
Inex
edit- Preceded by: Solar eclipse of March 9, 2054
- Followed by: Solar eclipse of January 29, 2112
Triad
edit- Preceded by: Solar eclipse of April 17, 1996
- Followed by: Solar eclipse of December 18, 2169
Solar eclipses of 2080–2083
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipse on July 15, 2083 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 2080 to 2083 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 | March 21, 2080 Partial |
−1.0578 | 126 | September 13, 2080 Partial |
1.0723 | |
131 | March 10, 2081 Annular |
−0.3653 | 136 | September 3, 2081 Total |
0.3378 | |
141 | February 27, 2082 Annular |
0.3361 | 146 | August 24, 2082 Total |
−0.4004 | |
151 | February 16, 2083 Partial |
1.017 | 156 | August 13, 2083 Partial |
−1.2064 |
Saros 151
editThis eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 3–24 occur between 1801 and 2200: | ||
---|---|---|
3 | 4 | 5 |
September 5, 1812 |
September 17, 1830 |
September 27, 1848 |
6 | 7 | 8 |
October 8, 1866 |
October 19, 1884 |
October 31, 1902 |
9 | 10 | 11 |
November 10, 1920 |
November 21, 1938 |
December 2, 1956 |
12 | 13 | 14 |
December 13, 1974 |
December 24, 1992 |
January 4, 2011 |
15 | 16 | 17 |
January 14, 2029 |
January 26, 2047 |
February 5, 2065 |
18 | 19 | 20 |
February 16, 2083 |
February 28, 2101 |
March 11, 2119 |
21 | 22 | 23 |
March 21, 2137 |
April 2, 2155 |
April 12, 2173 |
24 | ||
April 23, 2191 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 13, 2018 and July 12, 2094 | ||||
---|---|---|---|---|
July 12–13 | April 30–May 1 | February 16–17 | December 5–6 | September 22–23 |
117 | 119 | 121 | 123 | 125 |
July 13, 2018 |
April 30, 2022 |
February 17, 2026 |
December 5, 2029 |
September 23, 2033 |
127 | 129 | 131 | 133 | 135 |
July 13, 2037 |
April 30, 2041 |
February 16, 2045 |
December 5, 2048 |
September 22, 2052 |
137 | 139 | 141 | 143 | 145 |
July 12, 2056 |
April 30, 2060 |
February 17, 2064 |
December 6, 2067 |
September 23, 2071 |
147 | 149 | 151 | 153 | 155 |
July 13, 2075 |
May 1, 2079 |
February 16, 2083 |
December 6, 2086 |
September 23, 2090 |
157 | ||||
July 12, 2094 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
April 4, 1810 (Saros 126) |
March 4, 1821 (Saros 127) |
February 1, 1832 (Saros 128) |
December 31, 1842 (Saros 129) |
November 30, 1853 (Saros 130) |
October 30, 1864 (Saros 131) |
September 29, 1875 (Saros 132) |
August 29, 1886 (Saros 133) |
July 29, 1897 (Saros 134) |
June 28, 1908 (Saros 135) |
May 29, 1919 (Saros 136) |
April 28, 1930 (Saros 137) |
March 27, 1941 (Saros 138) |
February 25, 1952 (Saros 139) |
January 25, 1963 (Saros 140) |
December 24, 1973 (Saros 141) |
November 22, 1984 (Saros 142) |
October 24, 1995 (Saros 143) |
September 22, 2006 (Saros 144) |
August 21, 2017 (Saros 145) |
July 22, 2028 (Saros 146) |
June 21, 2039 (Saros 147) |
May 20, 2050 (Saros 148) |
April 20, 2061 (Saros 149) |
March 19, 2072 (Saros 150) |
February 16, 2083 (Saros 151) |
January 16, 2094 (Saros 152) |
December 17, 2104 (Saros 153) |
November 16, 2115 (Saros 154) |
October 16, 2126 (Saros 155) |
September 15, 2137 (Saros 156) |
August 14, 2148 (Saros 157) |
July 15, 2159 (Saros 158) |
June 14, 2170 (Saros 159) |
May 13, 2181 (Saros 160) |
April 12, 2192 (Saros 161) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
August 16, 1822 (Saros 142) |
July 28, 1851 (Saros 143) |
July 7, 1880 (Saros 144) |
June 17, 1909 (Saros 145) |
May 29, 1938 (Saros 146) |
May 9, 1967 (Saros 147) |
April 17, 1996 (Saros 148) |
March 29, 2025 (Saros 149) |
March 9, 2054 (Saros 150) |
February 16, 2083 (Saros 151) |
January 29, 2112 (Saros 152) |
January 8, 2141 (Saros 153) |
December 18, 2169 (Saros 154) |
November 28, 2198 (Saros 155) |
References
edit- ^ "February 16, 2083 Partial Solar Eclipse". timeanddate. Retrieved 23 August 2024.
- ^ "Partial Solar Eclipse of 2083 Feb 16". EclipseWise.com. Retrieved 23 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.
External links
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC