This article needs additional citations for verification. (March 2016) |
In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P(λ)
n(x,φ) introduced by Meixner (1934), which up to elementary changes of variables are the same as the Pollaczek polynomials Pλ
n(x,a,b) rediscovered by Pollaczek (1949) in the case λ=1/2, and later generalized by him.
They are defined by
Examples
editThe first few Meixner–Pollaczek polynomials are
Properties
editOrthogonality
editThe Meixner–Pollaczek polynomials Pm(λ)(x;φ) are orthogonal on the real line with respect to the weight function
and the orthogonality relation is given by[1]
Recurrence relation
editThe sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation[2]
Rodrigues formula
editThe Meixner–Pollaczek polynomials are given by the Rodrigues-like formula[3]
where w(x;λ,φ) is the weight function given above.
Generating function
editThe Meixner–Pollaczek polynomials have the generating function[4]
See also
editReferences
edit- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Pollaczek Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Meixner, J. (1934), "Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion", J. London Math. Soc., s1-9: 6–13, doi:10.1112/jlms/s1-9.1.6
- Pollaczek, Félix (1949), "Sur une généralisation des polynomes de Legendre", Les Comptes rendus de l'Académie des sciences, 228: 1363–1365, MR 0030037