In first-order logic, a Herbrand structure S is a structure over a vocabulary σ that is defined solely by the syntactical properties of σ. The idea is to take the symbol strings of terms as their values, e.g. the denotation of a constant symbol c is just "c" (the symbol). It is named after Jacques Herbrand.
Herbrand structures play an important role in the foundations of logic programming.[1]
Herbrand universe
editDefinition
editThe Herbrand universe serves as the universe in the Herbrand structure.
- The Herbrand universe of a first-order language Lσ, is the set of all ground terms of Lσ. If the language has no constants, then the language is extended by adding an arbitrary new constant.
- The Herbrand universe is countably infinite if σ is countable and a function symbol of arity greater than 0 exists.
- In the context of first-order languages we also speak simply of the Herbrand universe of the vocabulary σ.
- The Herbrand universe of a closed formula in Skolem normal form F is the set of all terms without variables that can be constructed using the function symbols and constants of F. If F has no constants, then F is extended by adding an arbitrary new constant.
- This second definition is important in the context of computational resolution.
Example
editLet Lσ, be a first-order language with the vocabulary
- constant symbols: c
- function symbols: f(·), g(·)
then the Herbrand universe of Lσ (or σ) is {c, f(c), g(c), f(f(c)), f(g(c)), g(f(c)), g(g(c)), ...}.
Notice that the relation symbols are not relevant for a Herbrand universe.
Herbrand structure
editA Herbrand structure interprets terms on top of a Herbrand universe.
Definition
editLet S be a structure, with vocabulary σ and universe U. Let W be the set of all terms over σ and W0 be the subset of all variable-free terms. S is said to be a Herbrand structure iff
- U = W0
- fS(t1, ..., tn) = f(t1, ..., tn) for every n-ary function symbol f ∈ σ and t1, ..., tn ∈ W0
- cS = c for every constant c in σ
Remarks
edit- U is the Herbrand universe of σ.
- A Herbrand structure that is a model of a theory T is called a Herbrand model of T.
Examples
editFor a constant symbol c and a unary function symbol f(.) we have the following interpretation:
- U = {c, fc, ffc, fffc, ...}
- fc → fc, ffc → ffc, ...
- c → c
Herbrand base
editIn addition to the universe, defined in § Herbrand universe, and the term denotations, defined in § Herbrand structure, the Herbrand base completes the interpretation by denoting the relation symbols.
Definition
editA Herbrand base is the set of all ground atoms whose argument terms are elements of the Herbrand universe.
Examples
editFor a binary relation symbol R, we get with the terms from above:
- {R(c, c), R(fc, c), R(c, fc), R(fc, fc), R(ffc, c), ...}
See also
editNotes
editReferences
edit- Ebbinghaus, Heinz-Dieter; Flum, Jörg; Thomas, Wolfgang (1996). Mathematical Logic. Springer. ISBN 978-0387942582.