to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
## einfachstes bsp, yields in Vasicek, Notation wie Brigo/Mercurio
#übernimmt log(z) als Parameter (nichtnegativ)
yvas<-function(ttm,para,rt) {
lambda=exp(para$lambda)
theta=exp(para$theta)
sigma2=(exp(para$sigma))^2
B=1/lambda*(1-exp(-lambda*ttm))
lnA=(theta-sigma2/(2*lambda^2))*(B-ttm)-sigma2/(4*lambda)*B^2
return( -(lnA-B*rt)/ttm )
}
### OU-levy processes ################################
## starting at time t=0 at Z_0=para$r until time t=T in "steps" equidistant steps; mean reversion "mr"
## parameters of the distribution of the bdlp are stored in param
process.ou<-function(para,type,T=1,steps=500) {
dt=T/(steps-1)
ou=array(para$r,dim=steps)
if (type=="cauchy") {
dLt=rcauchy(steps-1, location=para$location, scale=para$scale*dt)
} else if (type=="gamma") {
dLt=rgamma(n=steps-1, shape=para$shape, scale=para$scale*dt)
} else if (type=="IG") {
dLt=rinvGauss(n=steps-1, nu=(para$delta*dt)/para$gamma, lambda=(para$delta*dt)^2)
} else if (type=="norm") {
dLt=rnorm(n=steps-1, mean=para$lambda*para$theta*dt, sd=para$sigma*dt)
} else {
print("process.ou:: this type of OU-process is not yet implemented")
}
for (tm in 1:(steps-1)) {
ou[tm+1]=ou[tm]-para$lambda*ou[tm]*dt+dLt[tm]
}
return (ou)
}
set.seed(28019180)
time=seq(0,14,length=700)
pa=list(lambda=2,theta=0.04,sigma=0.2,r=0.08)
lpa=list(lambda=log(pa$lambda),theta=log(pa$theta),sigma=log(pa$sigma)) #log-parameter
gou=process.ou(pa,"norm",T=14,steps=length(time))
plot(time,gou,type="l",lwd=2,axes=F,xlab="Zeit",ylab="Zins",main="Zinsen im Vasicek-Modell",cex.main=2)
abline(h=pa$theta-pa$sigma^2/(2*pa$lambda^2),lty="dotted",col="grey")
lines(time,yvas(time,lpa,pa$r),col="purple",lwd=2)
yticks=axTicks(2)
axis(1)
axis(side=2,at=yticks,labels=paste(format(100*yticks,digits=3),"%",sep=""))
text(x=10.4,y=0.0325,expression(paste("d",r[t]==2(0.04-r[t]),"dt+",0.2,r[t],"d", W[t])),cex=1.4)
{{Information |Description = a path of a gaussion ornstein uhlenbeck short rate process and the corresponding yield curve. |Source = created by myself with GNU R, see source below |Date = 3 july 2007 |Author = Thomas Steiner |Permis