File:Svalbard oli 2020236 detail.jpg

Svalbard_oli_2020236_detail.jpg (720 × 480 pixels, file size: 219 KB, MIME type: image/jpeg)

Summary

Description

Svalbard, an archipelago between mainland Norway and the North Pole, is known as something of a mecca for geologists. It is one of the few places in the world that has easily accessible rocks from nearly every geological time period. There is little soil or vegetation to cover up the remarkable geologic diversity. And despite the Arctic location, ocean currents moderate the weather enough to keep much of the land clear of snow in the summer.

Among the more striking geologic attractions, at least when viewed from above, are glaciers on the archipelago’s northwestern island of Spitsbergen. The ice there seems to “bleed” meltwater that is an intense shade of red. The Operational Land Imager (OLI) on Landsat 8 acquired this natural-color image of red water pooling in a shallow meltwater lake near the terminus of Holmström glacier. The image was captured on August 23, 2020, shortly after an unusual heatwave brought record-breaking temperatures to Svalbard.

The red color is due to an abundance of sediment that has sloughed off from a particularly iron-rich layer of rock that formed roughly 400 million years ago (during the Devonian Period). Sometimes called the Old Red Sandstone, the rock layer formed on land when sand and other sediments were trapped in a basin enclosed by series of mountain ranges. The mountain ranges emerged when several of the world’s land masses were smashed together in a supercontinent called Laurussia, sometimes called the Old Red Continent.

“The red Devonian rock is fairly soft and erodes easily,” explained University of Edinburgh geologist Geoffrey Boulton. “Glacial grinding produces a great deal of silt. These very small—and in this case red—particles are easily suspended in flowing meltwater and take a long time to settle in still water.”

The silty meltwater pooled first in a shallow lake that had formed behind Holmström’s push moraine—a dam-like pile of sediment bulldozed by the front of the glacier when it surged about a century ago. Since then, a drainage stream has carved a narrow channel through the folded sediments of the moraine. The stream eventually widens and meanders some as it moves through mud flats as it approaches the sea. “When the silty water reaches seawater in Ekmanfjorden, it stays at the surface because the freshwater has a lower density than saltwater,” explained Boulton.
Date
Source https://earthobservatory.nasa.gov/images/147629/a-swirl-of-old-supercontinent-silt?src=eoa-iotd
Author NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland.
Permission
(Reusing this file)
Public domain This file is in the public domain in the United States because it was solely created by NASA. NASA copyright policy states that "NASA material is not protected by copyright unless noted". (See Template:PD-USGov, NASA copyright policy page or JPL Image Use Policy.)
Warnings:

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

23 August 2020

image/jpeg

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:25, 17 December 2020Thumbnail for version as of 06:25, 17 December 2020720 × 480 (219 KB)Tillman{{Information |Description=Svalbard, an archipelago between mainland Norway and the North Pole, is known as something of a mecca for geologists. It is one of the few places in the world that has easily accessible rocks from nearly every geological time period. There is little soil or vegetation to cover up the remarkable geologic diversity. And despite the Arctic location, ocean currents moderate the weather enough to keep much of the land clear of snow in the summer. Among the more striking...

The following 2 pages use this file:

Global file usage

The following other wikis use this file:

Metadata