File:Binary decomposition of dynamic plane for f0(z) = z^2.png

Original file (2,000 × 2,000 pixels, file size: 127 KB, MIME type: image/png)

Summary

Description
English: Binary decomposition of dynamic plane for f0(z) = z^2. Relation between binary decomposition and binary numbers. It is a graphical explanation how to convert proper decimal fraction to binary fraction
Date
Source Own work
Author Adam majewski
Other versions

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Summary

Relation between binary decomposition and external angles for quadratic polynomials[1]

2 dynamic planes  : for c= 0 and c= -2


There are 3 planes :

  • extended complex plane ( parameter eplane or dynamic plane, but dynamic is easier to understand), for example plane for fc(z) = z*z +c where c= -1
  • extended complex plane for c= 0 ( circle plane )
  • unrolled circle plane where circle is transformed int streight segment ( from 0 to 1 ). It can be called

C src code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  fraktal.republika.pl

  c console progam 


  How to compute iteration : 

  gcc r.c -lm -Wall -march=native 
  time ./a.out

  m
*/

#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also 
#include <complex.h>

/* --------------------------------- global variables and consts ------------------------------------------------------------ */





// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax ; //
static unsigned int iWidth ; // horizontal dimension of array

static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax ; //

static unsigned int iHeight = 8000; //  
// The size of array has to be a positive constant integer 
static unsigned int iSize ; // = iWidth*iHeight; 

// memmory 1D array 

unsigned char *data;
unsigned char *edge;
unsigned char *edge1;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax ; // = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array

/* world ( double) coordinate = dynamic plane */
static   const double ZxMin=-10.0;
static  const double ZxMax=10.0;
static  const double ZyMin=-10.0;
static  const double ZyMax=10.0;
static  double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static  double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static  double ratio ;
 




static unsigned long int iterMax  = 1000; //iHeight*100;

static double ER = 9.0; // Escape Radius for bailout test 
static double ER2;

/* colors = shades of gray from 0 to 255 */
// 8 bit color = int number from 0 to 255
unsigned char iColorOfInterior=200; // 
static unsigned char iColorOfExteriorUp = 125;
static unsigned char iColorOfExteriorDown = 245;

static unsigned char iColorOfUnknown = 100;

long int iUknownPixels=0;


const double pi = 3.141592653589793;
/* ------------------------------------------ functions -------------------------------------------------------------*/



      

//------------------complex numbers -----------------------------------------------------



// from screen to world coordinate ; linear mapping
// uses global cons
complex double GiveZ(unsigned int ix, unsigned int iy)
{ 
  double Zx, Zy; // Z=Zx+Zy*I = radius*e^{turn*2*pi*I}
  Zy=ZyMin + iy*PixelHeight; /*  */
  Zx=ZxMin + ix*PixelWidth;
 

  return (Zx+ I*Zy);

}

// uses globaal cons
//double GiveZy(unsigned int ix, unsigned int iy)
// { return (ZyMax - iy*PixelHeight);} // reverse y axis

/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i(unsigned int ix, unsigned int iy)
{ return ix + iy*iWidth; }

// plots raster point (ix,iy) 
int iDrawPoint(unsigned char A[], unsigned int ix, unsigned int iy, unsigned char iColor)
{ 

  /* i =  Give_i(ix,iy) compute index of 1D array from indices of 2D array */
  A[Give_i(ix,iy)] = iColor;

  return 0;
}


 





//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

int setup()
{

  
 
  
  
  printf("setup\n");
 
  /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth*iHeight; // size = number of points in array 
  // iy
  iyMax = iHeight - 1 ; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix
  
  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize-1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax-ZxMin)/ixMax; //  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax-ZyMin)/iyMax;
  ratio = ((ZxMax-ZxMin)/(ZyMax-ZyMin))/((float)iWidth/(float)iHeight); // it should be 1.000 ...
  
  

  // for numerical optimisation in iteration
  ER2 = ER * ER;
  
  
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc( iSize * sizeof(unsigned char) );
  edge = malloc( iSize * sizeof(unsigned char) );
  edge1 = malloc( iSize * sizeof(unsigned char) );

  if (edge1==NULL || edge== NULL || data == NULL)
    {
      fprintf(stderr," Could not allocate memory");
      getchar(); 
      return 1;
    }

  

 
  

  
   
  
  printf(" end of setup \n");
  
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

unsigned char ComputeColor(unsigned int ix, unsigned int iy, int IterationMax, int iMethod)
{ 
  // check behavour of z under fc(z)=z^2+c
  // using 2 target set:
  // 1. exterior or circle (center at origin and radius ER ) 
  // as a target set containing infinity = for escaping points ( bailout test)
  // for points of exterior of julia set
  // 2. interior of circle with center = alfa and radius dMaxDistance2fixed
  // as a target set for points of interior of Julia set 
  //  Z= Zx+ZY*i;

 
  int i=0; // number of iteration 
  
   
  complex double Z; // Z= Zx + Zy*I
  double Zx, Zy; 
  double Zx2, Zy2; // Zx2 = Zx* Zx
  
  
  // from screen to world coordinate 
  Z = GiveZ(ix,iy);
  Zx = creal(Z);
  Zy = cimag(Z);
  //
  Zx2=Zx*Zx;
  Zy2=Zy*Zy;
  
  
  

  if (Zx2+Zy2<1.0) return  iColorOfInterior;
  if (Zx2+Zy2>ER2)  
    {  switch( iMethod )
	{
            
    
	case 1: // level set method
	  if (i%2 == 0) return 150; 
	  else return 190;
	  break;

	case 2: // binary decomposition method 
	  if (Zy>0) return iColorOfExteriorUp; 
	  else return iColorOfExteriorDown;
	  break;


	} // switch 
           
    }
  	
   
    
  // if not inside target set around 
  while (i< IterationMax)
    { // then iterate 
      Zy=2*Zx*Zy ;      
      Zx=Zx2-Zy2 ;
      Zx2=Zx*Zx;
      Zy2=Zy*Zy;
            
      // escaping test
      if (Zx2+Zy2>ER2)  
	{  switch( iMethod )
	    {
            case 1: // level set method
              if (i%2 == 0) return 100; 
	      else return 200;
	      break;

            case 2: // binary decomposition method 
	      if (Zy>0) return iColorOfExteriorUp; 
	      else return iColorOfExteriorDown;
	      break;

	    } // switch 
           
	}
      // if escaping stop iteration
      i+=1;
    }

  // pixel is not escaping to infinity or not attracting to fixed attractore : 
  // change parameters : iterMax, distance ...
  iUknownPixels+=1;
  return  iColorOfUnknown ;   //
}

// plots raster point (ix,iy) 
int PlotPoint(unsigned char A[] , unsigned int ix, unsigned int iy, int IterationMax, int iMethod)
{
  unsigned i; /* index of 1D array */
  unsigned char iColor;
  

  i = Give_i(ix,iy); /* compute index of 1D array from indices of 2D array */
  iColor = ComputeColor(ix, iy, IterationMax, iMethod);
  A[i] = iColor;

  return 0;
}

// fill array 
// uses global var :  ...
// scanning complex plane 
int FillArray(unsigned char A[], int IterationMax, int iMethod )
{
  unsigned int ix, iy; // pixel coordinate 

  printf("compute image \n");
  // for all pixels of image 
  for(iy = iyMin; iy<=iyMax; ++iy) 
    { printf(" %d z %d\n", iy, iyMax); //info 
      for(ix= ixMin; ix<=ixMax; ++ix) PlotPoint(A, ix, iy, IterationMax, iMethod ) ; //  
    } 
   
  return 0;
}

int ComputeBoundariesFromA2B(unsigned char A[], unsigned char B[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in edge array ( global var )
 
 
 
 
  printf(" find boundaries in A array using  Sobel filter\n");   
  // #pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax, ER2)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= A[Give_i(iX-1,iY+1)] + 2*A[Give_i(iX,iY+1)] + A[Give_i(iX-1,iY+1)] - A[Give_i(iX-1,iY-1)] - 2*A[Give_i(iX-1,iY)] - A[Give_i(iX+1,iY-1)];
      Gh= A[Give_i(iX+1,iY+1)] + 2*A[Give_i(iX+1,iY)] + A[Give_i(iX-1,iY-1)] - A[Give_i(iX+1,iY-1)] - 2*A[Give_i(iX-1,iY)] - A[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {B[i]=255;} /* background */
      else {B[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}

int CopyBoundariesFromA2B(unsigned char A[], unsigned char B[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  printf("copy boundaries from edge array to data array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (A[i]==0) B[i]=0;}
 
 
 
  return 0;
}



 
 


 

// save "A" array to pgm file 
int SaveArray2PGMFile( unsigned char A[], double k)
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [30]; /* name of file */
  sprintf(name,"f%.0f", k); /*  */
  char *filename =strcat(name,".pgm");
  char *comment="# Numerical approximation of  Julia set for f(z)= z^2 after plane transformation; Adam Majewski";/* comment should start with # */

  /* save image to the pgm file  */      
  fp= fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode  */
  fprintf(fp,"P5\n %s\n %u %u\n %u\n",comment,iWidth,iHeight,MaxColorComponentValue);  /*write header to the file*/
  fwrite(A,iSize,1,fp);  /*write A array to the file in one step */
  printf("File %s saved. \n", filename);
  fclose(fp);

  return 0;
}

int info()
{
  // diplay info messages
  printf("Numerical approximation of   \n");
  printf("Image Width = %f \n", ZxMax-ZxMin);
  printf("PixelWidth = %f \n", PixelWidth);
  printf("Maximal number of iterations = iterMax = %ld \n", iterMax);
  printf("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  printf("Unknown pixels = %ld ; it should be 0 ...\n", iUknownPixels);
  return 0;
}

/* -----------------------------------------  main   -------------------------------------------------------------*/
int main()
{

 
  setup();
 

 
   
 
  FillArray(data, iterMax, 1 ); // level set method
  SaveArray2PGMFile( data, iHeight+0); // save array data (components of Fatou set ) to pgm file

  ComputeBoundariesFromA2B(data, edge1);
  SaveArray2PGMFile( edge1, iHeight+1); // save array edge (Julia set ) to pgm file

  FillArray(data, iterMax, 2 ); // binary decomposition method
  SaveArray2PGMFile( data, iHeight+2); // save array data (components of Fatou set ) to pgm file

  ComputeBoundariesFromA2B(data, edge);
  SaveArray2PGMFile( edge, iHeight+3); // save array edge (Julia set ) to pgm file

  

  CopyBoundariesFromA2B(edge1, edge); // boundary = boundary from LSM + boundary from BDM
  SaveArray2PGMFile( edge, iHeight+4); // save array data (Julia set and components ) to pgm file
  CopyBoundariesFromA2B(edge, data);
  SaveArray2PGMFile( data, iHeight+5); // save array data (Julia set and components ) to pgm file

  

  
  

  

  printf(" allways free memory  to avoid buffer overflow \n");
  free(data);
  free(edge);
  free(edge1);
 

  
  info();

 

  return 0;
}

Converted with Image Magic :

convert f8005.pgm -resize 2000x2000 -set comment 'binary decomposition of exterior of Julia set f0(z)=z^2 ; Adam Majewski' f.png
  1. binary decomposition and external angles by claude

Captions

Binary decomposition of dynamic plane for f0(z) = z^2

Items portrayed in this file

depicts

20 April 2015

image/png

fb1dc8265400cbe913fe9022f8b92eccb9dd1f91

129,740 byte

2,000 pixel

2,000 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:10, 20 April 2015Thumbnail for version as of 16:10, 20 April 20152,000 × 2,000 (127 KB)Soul windsurferUser created page with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata