In mathematics, a Ringschluss (German: Beweis durch Ringschluss, lit.'Proof by ring-closure') is a mathematical proof technique where the equivalence of several statements can be proven without having to prove all pairwise equivalences directly.

In order to prove that the statements are each pairwise equivalent, proofs are given for the implications , , , and .[1][2]

The pairwise equivalence of the statements then results from the transitivity of the material conditional.

Example

edit

For   the proofs are given for  ,  ,   and  . The equivalence of   and   results from the chain of conclusions that are no longer explicitly given:

  . This leads to:  
  . This leads to:  

That is  .

Motivation

edit

The technique saves writing effort above all. By dispensing with the formally necessary chain of conclusions, only   direct proofs need to be provided for   instead of   direct proofs. The difficulty for the mathematician is to find a sequence of statements that allows for the most elegant direct proofs possible.

See also

edit

References

edit
  1. ^ Plaue, Matthias; Scherfner, Mike (2019-02-11). Mathematik für das Bachelorstudium I: Grundlagen und Grundzüge der linearen Algebra und Analysis [Mathematics for the Bachelor's degree I: Fundamentals and basics of linear algebra and analysis] (in German). Springer-Verlag. p. 26. ISBN 978-3-662-58352-4.
  2. ^ Struckmann, Werner; Wätjen, Dietmar (2016-10-20). Mathematik für Informatiker: Grundlagen und Anwendungen [Mathematics for Computer Scientists: Fundamentals and Applications] (in German). Springer-Verlag. p. 28. ISBN 978-3-662-49870-5.