Clostridium acetobutylicum

(Redirected from Weizmann organism)

Clostridium acetobutylicum, ATCC 824, is a commercially valuable bacterium sometimes called the "Weizmann Organism", after Jewish Russian-born biochemist Chaim Weizmann. A senior lecturer at the University of Manchester, England, he used them in 1916 as a bio-chemical tool to produce at the same time, jointly, acetone, ethanol, and n-butanol from starch. The method has been described since as the ABE process, (Acetone Butanol Ethanol fermentation process), yielding 3 parts of acetone, 6 of n-butanol, and 1 of ethanol. Acetone was used in the important wartime task of casting cordite. The alcohols were used to produce vehicle fuels and synthetic rubber.

Clostridium acetobutylicum
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Bacillota
Class: Clostridia
Order: Eubacteriales
Family: Clostridiaceae
Genus: Clostridium
Species:
C. acetobutylicum
Binomial name
Clostridium acetobutylicum
McCoy et al. 1926 (Approved Lists 1980)
Chaim Weizmann

Unlike yeast, which can digest only some sugars into alcohol and carbon dioxide, C. acetobutylicum and other Clostridia can digest whey, sugar, starch, cellulose and perhaps certain types of lignin, yielding n-butanol, propionic acid, ether, and glycerin.

In genetic engineering

edit

In 2008, a strain of Escherichia coli was genetically engineered to synthesize butanol; the genes were derived from Clostridium acetobutylicum.[1][2] In 2013, the first microbial production of short-chain alkanes was reported[3] - which is a considerable step toward the production of gasoline. One of the crucial enzymes - a fatty acyl-CoA reductase - came from Clostridium acetobutylicum.

See also

edit

References

edit
  1. ^ M. Goho, Alexandra (2008-01-16). "Better Bugs for Making Butanol". MIT Technology Review.
  2. ^ Atsumi, S.; Hanai, T.; Liao, JC. (Jan 2008). "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels". Nature. 451 (7174): 86–9. Bibcode:2008Natur.451...86A. doi:10.1038/nature06450. PMID 18172501. S2CID 4413113.
  3. ^ Choi, YJ.; Lee, SY. (Oct 2013). "Microbial production of short-chain alkanes". Nature. 502 (7472): 571–4. Bibcode:2013Natur.502..571C. doi:10.1038/nature12536. PMID 24077097. S2CID 4393929.

Further reading

edit
edit