Definition, basic properties
edit
The Wallis integrals are the terms of the sequence
(
W
n
)
n
≥
0
{\displaystyle (W_{n})_{n\geq 0}}
defined by
W
n
=
∫
0
π
2
sin
n
x
d
x
,
{\displaystyle W_{n}=\int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx,}
or equivalently,
W
n
=
∫
0
π
2
cos
n
x
d
x
.
{\displaystyle W_{n}=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx.}
The first few terms of this sequence are:
W
0
{\displaystyle W_{0}}
W
1
{\displaystyle W_{1}}
W
2
{\displaystyle W_{2}}
W
3
{\displaystyle W_{3}}
W
4
{\displaystyle W_{4}}
W
5
{\displaystyle W_{5}}
W
6
{\displaystyle W_{6}}
W
7
{\displaystyle W_{7}}
W
8
{\displaystyle W_{8}}
...
W
n
{\displaystyle W_{n}}
π
2
{\displaystyle {\frac {\pi }{2}}}
1
{\displaystyle 1}
π
4
{\displaystyle {\frac {\pi }{4}}}
2
3
{\displaystyle {\frac {2}{3}}}
3
π
16
{\displaystyle {\frac {3\pi }{16}}}
8
15
{\displaystyle {\frac {8}{15}}}
5
π
32
{\displaystyle {\frac {5\pi }{32}}}
16
35
{\displaystyle {\frac {16}{35}}}
35
π
256
{\displaystyle {\frac {35\pi }{256}}}
...
n
−
1
n
W
n
−
2
{\displaystyle {\frac {n-1}{n}}W_{n-2}}
The sequence
(
W
n
)
{\displaystyle (W_{n})}
is decreasing and has positive terms. In fact, for all
n
≥
0
:
{\displaystyle n\geq 0:}
W
n
>
0
,
{\displaystyle W_{n}>0,}
because it is an integral of a non-negative continuous function which is not identically zero;
W
n
−
W
n
+
1
=
∫
0
π
2
sin
n
x
d
x
−
∫
0
π
2
sin
n
+
1
x
d
x
=
∫
0
π
2
(
sin
n
x
)
(
1
−
sin
x
)
d
x
>
0
,
{\displaystyle W_{n}-W_{n+1}=\int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx-\int _{0}^{\frac {\pi }{2}}\sin ^{n+1}x\,dx=\int _{0}^{\frac {\pi }{2}}(\sin ^{n}x)(1-\sin x)\,dx>0,}
again because the last integral is of a non-negative continuous function.
Since the sequence
(
W
n
)
{\displaystyle (W_{n})}
is decreasing and bounded below by 0, it converges to a non-negative limit. Indeed, the limit is zero (see below).
By means of integration by parts , a reduction formula can be obtained. Using the identity
sin
2
x
=
1
−
cos
2
x
{\displaystyle \sin ^{2}x=1-\cos ^{2}x}
, we have for all
n
≥
2
{\displaystyle n\geq 2}
,
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
(
sin
n
−
2
x
)
(
1
−
cos
2
x
)
d
x
=
∫
0
π
2
sin
n
−
2
x
d
x
−
∫
0
π
2
sin
n
−
2
x
cos
2
x
d
x
.
Equation (1)
{\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx&=\int _{0}^{\frac {\pi }{2}}(\sin ^{n-2}x)(1-\cos ^{2}x)\,dx\\&=\int _{0}^{\frac {\pi }{2}}\sin ^{n-2}x\,dx-\int _{0}^{\frac {\pi }{2}}\sin ^{n-2}x\cos ^{2}x\,dx.\qquad {\text{Equation (1)}}\end{aligned}}}
Integrating the second integral by parts, with:
v
′
(
x
)
=
cos
(
x
)
sin
n
−
2
(
x
)
{\displaystyle v'(x)=\cos(x)\sin ^{n-2}(x)}
, whose anti-derivative is
v
(
x
)
=
1
n
−
1
sin
n
−
1
(
x
)
{\displaystyle v(x)={\frac {1}{n-1}}\sin ^{n-1}(x)}
u
(
x
)
=
cos
(
x
)
{\displaystyle u(x)=\cos(x)}
, whose derivative is
u
′
(
x
)
=
−
sin
(
x
)
,
{\displaystyle u'(x)=-\sin(x),}
we have:
∫
0
π
2
sin
n
−
2
x
cos
2
x
d
x
=
[
sin
n
−
1
x
n
−
1
cos
x
]
0
π
2
+
1
n
−
1
∫
0
π
2
sin
n
−
1
x
sin
x
d
x
=
0
+
1
n
−
1
W
n
.
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n-2}x\cos ^{2}x\,dx=\left[{\frac {\sin ^{n-1}x}{n-1}}\cos x\right]_{0}^{\frac {\pi }{2}}+{\frac {1}{n-1}}\int _{0}^{\frac {\pi }{2}}\sin ^{n-1}x\sin x\,dx=0+{\frac {1}{n-1}}W_{n}.}
Substituting this result into equation (1) gives
W
n
=
W
n
−
2
−
1
n
−
1
W
n
,
{\displaystyle W_{n}=W_{n-2}-{\frac {1}{n-1}}W_{n},}
and thus
W
n
=
n
−
1
n
W
n
−
2
,
Equation (2)
{\displaystyle W_{n}={\frac {n-1}{n}}W_{n-2},\qquad {\text{Equation (2)}}}
for all
n
≥
2.
{\displaystyle n\geq 2.}
This is a recurrence relation giving
W
n
{\displaystyle W_{n}}
in terms of
W
n
−
2
{\displaystyle W_{n-2}}
. This, together with the values of
W
0
{\displaystyle W_{0}}
and
W
1
,
{\displaystyle W_{1},}
give us two sets of formulae for the terms in the sequence
(
W
n
)
{\displaystyle (W_{n})}
, depending on whether
n
{\displaystyle n}
is odd or even:
W
2
p
=
2
p
−
1
2
p
⋅
2
p
−
3
2
p
−
2
⋯
1
2
W
0
=
(
2
p
−
1
)
!
!
(
2
p
)
!
!
⋅
π
2
=
(
2
p
)
!
2
2
p
(
p
!
)
2
⋅
π
2
,
{\displaystyle W_{2p}={\frac {2p-1}{2p}}\cdot {\frac {2p-3}{2p-2}}\cdots {\frac {1}{2}}W_{0}={\frac {(2p-1)!!}{(2p)!!}}\cdot {\frac {\pi }{2}}={\frac {(2p)!}{2^{2p}(p!)^{2}}}\cdot {\frac {\pi }{2}},}
W
2
p
+
1
=
2
p
2
p
+
1
⋅
2
p
−
2
2
p
−
1
⋯
2
3
W
1
=
(
2
p
)
!
!
(
2
p
+
1
)
!
!
=
2
2
p
(
p
!
)
2
(
2
p
+
1
)
!
.
{\displaystyle W_{2p+1}={\frac {2p}{2p+1}}\cdot {\frac {2p-2}{2p-1}}\cdots {\frac {2}{3}}W_{1}={\frac {(2p)!!}{(2p+1)!!}}={\frac {2^{2p}(p!)^{2}}{(2p+1)!}}.}
Another relation to evaluate the Wallis' integrals
edit
Wallis's integrals can be evaluated by using Euler integrals :
Euler integral of the first kind : the Beta function :
B
(
x
,
y
)
=
∫
0
1
t
x
−
1
(
1
−
t
)
y
−
1
d
t
=
Γ
(
x
)
Γ
(
y
)
Γ
(
x
+
y
)
{\displaystyle \mathrm {B} (x,y)=\int _{0}^{1}t^{x-1}(1-t)^{y-1}\,dt={\frac {\Gamma (x)\Gamma (y)}{\Gamma (x+y)}}}
for Re(x ), Re(y ) > 0
Euler integral of the second kind : the Gamma function :
Γ
(
z
)
=
∫
0
∞
t
z
−
1
e
−
t
d
t
{\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,dt}
for Re(z ) > 0 .
If we make the following substitution inside the Beta function:
{
t
=
sin
2
u
1
−
t
=
cos
2
u
d
t
=
2
sin
u
cos
u
d
u
,
{\displaystyle \quad \left\{{\begin{matrix}t=\sin ^{2}u\\1-t=\cos ^{2}u\\dt=2\sin u\cos udu\end{matrix}}\right.,}
we obtain:
B
(
a
,
b
)
=
2
∫
0
π
2
sin
2
a
−
1
u
cos
2
b
−
1
u
d
u
,
{\displaystyle \mathrm {B} (a,b)=2\int _{0}^{\frac {\pi }{2}}\sin ^{2a-1}u\cos ^{2b-1}u\,du,}
so this gives us the following relation to evaluate the Wallis integrals:
W
n
=
1
2
B
(
n
+
1
2
,
1
2
)
=
Γ
(
n
+
1
2
)
Γ
(
1
2
)
2
Γ
(
n
2
+
1
)
.
{\displaystyle W_{n}={\frac {1}{2}}\mathrm {B} \left({\frac {n+1}{2}},{\frac {1}{2}}\right)={\frac {\Gamma \left({\tfrac {n+1}{2}}\right)\Gamma \left({\tfrac {1}{2}}\right)}{2\,\Gamma \left({\tfrac {n}{2}}+1\right)}}.}
So, for odd
n
{\displaystyle n}
, writing
n
=
2
p
+
1
{\displaystyle n=2p+1}
, we have:
W
2
p
+
1
=
Γ
(
p
+
1
)
Γ
(
1
2
)
2
Γ
(
p
+
1
+
1
2
)
=
p
!
Γ
(
1
2
)
(
2
p
+
1
)
Γ
(
p
+
1
2
)
=
2
p
p
!
(
2
p
+
1
)
!
!
=
2
2
p
(
p
!
)
2
(
2
p
+
1
)
!
,
{\displaystyle W_{2p+1}={\frac {\Gamma \left(p+1\right)\Gamma \left({\frac {1}{2}}\right)}{2\,\Gamma \left(p+1+{\frac {1}{2}}\right)}}={\frac {p!\Gamma \left({\frac {1}{2}}\right)}{(2p+1)\,\Gamma \left(p+{\frac {1}{2}}\right)}}={\frac {2^{p}\;p!}{(2p+1)!!}}={\frac {2^{2\,p}\;(p!)^{2}}{(2p+1)!}},}
whereas for even
n
{\displaystyle n}
, writing
n
=
2
p
{\displaystyle n=2p}
and knowing that
Γ
(
1
2
)
=
π
{\displaystyle \Gamma \left({\tfrac {1}{2}}\right)={\sqrt {\pi }}}
, we get :
W
2
p
=
Γ
(
p
+
1
2
)
Γ
(
1
2
)
2
Γ
(
p
+
1
)
=
(
2
p
−
1
)
!
!
π
2
p
+
1
p
!
=
(
2
p
)
!
2
2
p
(
p
!
)
2
⋅
π
2
.
{\displaystyle W_{2p}={\frac {\Gamma \left(p+{\frac {1}{2}}\right)\Gamma \left({\frac {1}{2}}\right)}{2\,\Gamma \left(p+1\right)}}={\frac {(2p-1)!!\;\pi }{2^{p+1}\;p!}}={\frac {(2p)!}{2^{2\,p}\;(p!)^{2}}}\cdot {\frac {\pi }{2}}.}
From the recurrence formula above
(
2
)
{\displaystyle \mathbf {(2)} }
, we can deduce that
W
n
+
1
∼
W
n
{\displaystyle \ W_{n+1}\sim W_{n}}
(equivalence of two sequences).
Indeed, for all
n
∈
N
{\displaystyle n\in \,\mathbb {N} }
:
W
n
+
2
⩽
W
n
+
1
⩽
W
n
{\displaystyle \ W_{n+2}\leqslant W_{n+1}\leqslant W_{n}}
(since the sequence is decreasing)
W
n
+
2
W
n
⩽
W
n
+
1
W
n
⩽
1
{\displaystyle {\frac {W_{n+2}}{W_{n}}}\leqslant {\frac {W_{n+1}}{W_{n}}}\leqslant 1}
(since
W
n
>
0
{\displaystyle \ W_{n}>0}
)
n
+
1
n
+
2
⩽
W
n
+
1
W
n
⩽
1
{\displaystyle {\frac {n+1}{n+2}}\leqslant {\frac {W_{n+1}}{W_{n}}}\leqslant 1}
(by equation
(
2
)
{\displaystyle \mathbf {(2)} }
).
By the sandwich theorem , we conclude that
W
n
+
1
W
n
→
1
{\displaystyle {\frac {W_{n+1}}{W_{n}}}\to 1}
, and hence
W
n
+
1
∼
W
n
{\displaystyle \ W_{n+1}\sim W_{n}}
.
By examining
W
n
W
n
+
1
{\displaystyle W_{n}W_{n+1}}
, one obtains the following equivalence:
W
n
∼
π
2
n
{\displaystyle W_{n}\sim {\sqrt {\frac {\pi }{2\,n}}}\quad }
(and consequently
lim
n
→
∞
n
W
n
=
π
/
2
{\displaystyle \lim _{n\rightarrow \infty }{\sqrt {n}}\,W_{n}={\sqrt {\pi /2}}}
).
Proof
For all
n
∈
N
{\displaystyle n\in \,\mathbb {N} }
, let
u
n
=
(
n
+
1
)
W
n
W
n
+
1
{\displaystyle u_{n}=(n+1)\,W_{n}\,W_{n+1}}
.
It turns out that,
∀
n
∈
N
,
u
n
+
1
=
u
n
{\displaystyle \forall n\in \mathbb {N} ,\,u_{n+1}=u_{n}}
because of equation
(
2
)
{\displaystyle \mathbf {(2)} }
.
In other words
(
u
n
)
{\displaystyle \ (u_{n})}
is a constant.
It follows that for all
n
∈
N
{\displaystyle n\in \,\mathbb {N} }
,
u
n
=
u
0
=
W
0
W
1
=
π
2
{\displaystyle u_{n}=u_{0}=W_{0}\,W_{1}={\frac {\pi }{2}}}
.
Now, since
n
+
1
∼
n
{\displaystyle \ n+1\sim n}
and
W
n
+
1
∼
W
n
{\displaystyle \ W_{n+1}\sim W_{n}}
, we have, by the product rules of equivalents,
u
n
∼
n
W
n
2
{\displaystyle \ u_{n}\sim n\,W_{n}^{2}}
.
Thus,
n
W
n
2
∼
π
2
{\displaystyle \ n\,W_{n}^{2}\sim {\frac {\pi }{2}}}
,
from which the desired result follows
(noting that
W
n
>
0
{\displaystyle \ W_{n}>0}
).
Deducing the Double Factorial Ratio
edit
Similarly, from above, we have:
W
2
p
∼
π
4
p
=
1
2
π
p
.
{\displaystyle W_{2p}\sim {\sqrt {\frac {\pi }{4p}}}={\frac {1}{2}}{\sqrt {\frac {\pi }{p}}}.}
Expanding
W
2
p
{\displaystyle W_{2p}}
and using the formula above for double factorials, we get:
W
2
p
=
(
2
p
−
1
)
!
!
(
2
p
)
!
!
⋅
π
2
∼
1
2
π
p
.
{\displaystyle W_{2p}={\frac {(2p-1)!!}{(2p)!!}}\cdot {\frac {\pi }{2}}\sim {\frac {1}{2}}{\sqrt {\frac {\pi }{p}}}.}
Simplifying, we obtain:
(
2
p
−
1
)
!
!
(
2
p
)
!
!
∼
1
π
p
,
{\displaystyle {\frac {(2p-1)!!}{(2p)!!}}\sim {\frac {1}{\sqrt {\pi \,p}}},}
or
(
2
p
)
!
!
(
2
p
−
1
)
!
!
∼
π
p
.
{\displaystyle {\frac {(2p)!!}{(2p-1)!!}}\sim {\sqrt {\pi \,p}}.}
Evaluating the Gaussian Integral
edit
The Gaussian integral can be evaluated through the use of Wallis' integrals.
We first prove the following inequalities:
∀
n
∈
N
∗
∀
u
∈
R
+
u
⩽
n
⇒
(
1
−
u
/
n
)
n
⩽
e
−
u
{\displaystyle \forall n\in \mathbb {N} ^{*}\quad \forall u\in \mathbb {R} _{+}\quad u\leqslant n\quad \Rightarrow \quad (1-u/n)^{n}\leqslant e^{-u}}
∀
n
∈
N
∗
∀
u
∈
R
+
e
−
u
⩽
(
1
+
u
/
n
)
−
n
{\displaystyle \forall n\in \mathbb {N} ^{*}\quad \forall u\in \mathbb {R} _{+}\qquad e^{-u}\leqslant (1+u/n)^{-n}}
In fact, letting
u
/
n
=
t
{\displaystyle u/n=t}
,
the first inequality (in which
t
∈
[
0
,
1
]
{\displaystyle t\in [0,1]}
) is
equivalent to
1
−
t
⩽
e
−
t
{\displaystyle 1-t\leqslant e^{-t}}
;
whereas the second inequality reduces to
e
−
t
⩽
(
1
+
t
)
−
1
{\displaystyle e^{-t}\leqslant (1+t)^{-1}}
,
which becomes
e
t
⩾
1
+
t
{\displaystyle e^{t}\geqslant 1+t}
.
These 2 latter inequalities follow from the convexity of the
exponential function
(or from an analysis of the function
t
↦
e
t
−
1
−
t
{\displaystyle t\mapsto e^{t}-1-t}
).
Letting
u
=
x
2
{\displaystyle u=x^{2}}
and
making use of the basic properties of improper integrals
(the convergence of the integrals is obvious),
we obtain the inequalities:
∫
0
n
(
1
−
x
2
/
n
)
n
d
x
⩽
∫
0
n
e
−
x
2
d
x
⩽
∫
0
+
∞
e
−
x
2
d
x
⩽
∫
0
+
∞
(
1
+
x
2
/
n
)
−
n
d
x
{\displaystyle \int _{0}^{\sqrt {n}}(1-x^{2}/n)^{n}dx\leqslant \int _{0}^{\sqrt {n}}e^{-x^{2}}dx\leqslant \int _{0}^{+\infty }e^{-x^{2}}dx\leqslant \int _{0}^{+\infty }(1+x^{2}/n)^{-n}dx}
for use with the sandwich theorem (as
n
→
∞
{\displaystyle n\to \infty }
).
The first and last integrals can be evaluated easily using
Wallis' integrals.
For the first one, let
x
=
n
sin
t
{\displaystyle x={\sqrt {n}}\,\sin \,t}
(t varying from 0 to
π
/
2
{\displaystyle \pi /2}
).
Then, the integral becomes
n
W
2
n
+
1
{\displaystyle {\sqrt {n}}\,W_{2n+1}}
.
For the last integral, let
x
=
n
tan
t
{\displaystyle x={\sqrt {n}}\,\tan \,t}
(t varying from
0
{\displaystyle 0}
to
π
/
2
{\displaystyle \pi /2}
).
Then, it becomes
n
W
2
n
−
2
{\displaystyle {\sqrt {n}}\,W_{2n-2}}
.
As we have shown before,
lim
n
→
+
∞
n
W
n
=
π
/
2
{\displaystyle \lim _{n\rightarrow +\infty }{\sqrt {n}}\;W_{n}={\sqrt {\pi /2}}}
. So, it follows that
∫
0
+
∞
e
−
x
2
d
x
=
π
/
2
{\displaystyle \int _{0}^{+\infty }e^{-x^{2}}dx={\sqrt {\pi }}/2}
.
Remark: There are other methods of evaluating the Gaussian integral.
Some of them are more direct.
Pascal Sebah and Xavier Gourdon. Introduction to the Gamma Function . In PostScript and HTML formats.