The Radeon HD 7000 series, codenamed "Southern Islands", is a family of GPUs developed by AMD,[9] and manufactured on TSMC's 28 nm process.[10]

AMD Radeon HD 7000 series
AMD Radeon graphics logo
Release dateJanuary 9, 2012; 12 years ago (January 9, 2012)
CodenameSouthern Islands
London
Trinity
Sea Islands
ArchitectureTeraScale 2
TeraScale 3
GCN 1st gen
GCN 2nd gen
Transistors
  • 292M 40 nm (Cedar)
  • 370M 40 nm (Caicos)
  • 716M 40 nm (Turks)
  • 1.500M 28 nm (Cape Verde)
  • 2.080M 28 nm (Bonaire)
  • 2.800M 28 nm (Pitcairn)
  • 4.313M 28 nm (Tahiti)
  • 2x 4.313M 28 nm (New Zealand)
Cards
Entry-level73xx - 76xx
Mid-range7750
7770
7790
7850
High-end7870
7870 XT
7950
7970
Enthusiast7990
API support
DirectX
OpenCLOpenCL 2.1 (GCN version)
OpenGLOpenGL 4.5[1][2][3][4][5] OpenGL 4.6 (GCN only, Win 7+ and Adrenalin 18.4.1+, Linux Mesa: WIP) [6]
Vulkan
History
PredecessorRadeon HD 6000 series
VariantRadeon HD 8000 series
SuccessorRadeon R5/R7/R9 200 series
Support status
Unsupported

The primary competitor of Southern Islands was Nvidia's GeForce 600 series (also manufactured at TSMC), which shipped during Q1 2012, largely due to the immaturity of the 28 nm process.[11]

Architecture

edit

Graphics Core Next was introduced with the Radeon HD 7000 series.

  • A GPU implementing Graphics Core Next is found on the Radeon HD 7730 and above branded discrete GPUs.
  • A GPU implementing TeraScale (microarchitecture) version "Evergreen (VLIW5)" is found on Radeon HD 7670 and below branded discrete GPUs.
  • A GPU implementing TeraScale (microarchitecture) version "Northern Islands (VLIW4)" is found on APUs whose GPUs are branded with the Radeon HD 7000 series.
  • OpenGL 4.x compliance requires supporting FP64 shaders. These are implemented by emulation on some TeraScale (microarchitecture) GPUs.
  • On Windows, Vulkan 1.0 requires GCN-Architecture. Vulkan 1.1 requires actual 2nd Gen. of GCN or higher (here only HD 7790).[12] On newer AMD drivers Vulkan 1.1 on Windows and Linux is supported on all GCN-architecture based GPUs. With the RADV driver, Vulkan 1.3 is supported on GCN GPUs.[13][14][15][16]

Multi-monitor support

edit

The AMD Eyefinity-branded on-die display controllers were introduced in September 2009 in the Radeon HD 5000 series and have been present in all products since.[17]

Video acceleration

edit

Both Unified Video Decoder (UVD) and Video Coding Engine (VCE) are present on the dies of all products and supported by AMD Catalyst and by the free and open-source graphics device driver#ATI/AMD.

OpenCL (API)

edit

OpenCL accelerates many scientific Software Packages against CPU up to factor 10 or 100 and more. Open CL 1.0 to 1.2 are supported for all Chips with Terascale and GCN Architecture. OpenCL 2.0 is supported with GCN 2nd Gen. or 1.2 and higher.[18] For OpenCL 2.1 and 2.2 only Driver Updates are necessary with OpenCL 2.0 conformant Cards.

Vulkan (API)

edit

Vulkan 1.1 is supported for all with GCN Architecture using recent drivers on both Linux and Windows. Vulkan 1.2 is available for GCN 2nd Gen or higher with Windows Adrenalin 20.1(and newer). Vulkan 1.3 is available for GCN 1st Gen and higher with Mesa RADV on Linux.[13][14][15][16]

Desktop products

edit
 
Die and package of a Radeon HD 7870 graphics card

The 28 nm product line is divided in three dies (Tahiti, Pitcairn, and Cape Verde), each one highly increasing shader units (32, 20 and 10 respectively). While this gives a high increase in single-precision floating point, there is however a significant departure in double-precision compute power. Tahiti has a maximum ¼ double precision throughput relative to its single precision throughput, while the other two smaller consumer dies can only achieve a 1/16 ratio.[19] While each bigger die has two additional memory controllers widening its bus by 128 bits, Pitcairn however has the same front-end dual tesselator units as Tahiti giving it similar performance to its larger brethren in DX11 tessellation benchmarks.[19]

Radeon HD 7900

edit

Codenamed Tahiti, the Radeon HD 7900 series was announced on December 22, 2011. Products include the Radeon 7970 GHz Edition, Radeon HD 7970 and Radeon HD 7950.[20] The Radeon HD 7970 features 2048 usable stream cores,[A] whereas the Radeon HD 7950 has 1792 usable stream cores, as 256 out of the 2048 cores are disabled during product binning which detects defective areas of a chip. The cards are the first products to take advantage of AMD's new "Graphics Core Next" compute architecture. Both cards are equipped with 3 GB GDDR5 memory and manufactured on TSMC's 28 nm process. The Tahiti GPU is also used in the Radeon HD 7870 XT, released November 19, 2012. In this case one quarter of the stream processors are disabled, giving 1536 usable cores. Additionally, the memory interface is downgraded from 384-bit to 256-bit, along with a memory size reduction from 3 GB to 2 GB.

Radeon HD 7800

edit

Codenamed Pitcairn, the Radeon HD 7800 series was formally unveiled on March 5, 2012, with retail availability from March 19, 2012. Products include the Radeon HD 7870 and Radeon HD 7850. The Radeon HD 7870 features 1280 usable stream cores, whereas the Radeon HD 7850 has 1024 usable stream cores. Both cards are equipped with 2GB GDDR5 memory (some 7850s offer 1GB) and manufactured on TSMC's 28 nm process.[22]

Radeon HD 7700

edit

Codenamed Cape Verde, the Radeon HD 7700 series was released on February 15, 2012. Products include the Radeon HD 7770 GHz Edition and Radeon HD 7750. The Radeon HD 7770 GHz Edition features 640 stream cores based on the GCN architecture, whereas the Radeon HD 7750 has only 512 usable stream cores. Both cards are equipped with 1 GB GDDR5 memory and manufactured in 28 nm. On March 22, 2013, another card, Radeon HD 7790, was introduced in this series. This card is based on the Bonaire architecture, which features 896 stream cores using 2nd Generation GCN technology, an incremental update. In May 2013, AMD launched the Radeon HD 7730, based on the Cape Verde LE graphics processor. It features a 128-bit memory bus, 384 stream cores, 8 ROPs, and a core clock speed of up to 800 MHz. The HD 7730 came with GDDR5 and DDR3 variants, running on memory clock speeds of 1125 MHz and 900 MHz, respectively. Load power usage was lowered by 14.5% (47W) compared to the Radeon HD 7750 (55W).[23]

Chipset table

edit
 
Radeon HD 7750 card using a fanless design

Desktop products

edit
  • HD 7790 model is designed more like the 7800–7900 models rather than the 7700 featuring 2x primitive rate instead of 1x which is found in the other 7700 cards.[24]
  • Bonaire XT is the only card in the 7000 series to support True Audio.


Model
(Codename)
Launch Architecture
Fab
Transistors
Die Size
Core Fillrate[a][b][c] Processing power[a][d]
(GFLOPS)
Memory[e] TDP (Watts) Bus interface Release Price (USD)
Config[f] Clock[a] (MHz) Texture (GT/s) Pixel (GP/s) Single Double Size (MiB) Bus type
& width
Clock (MHz) Bandwidth (GB/s) Idle Max.
Radeon HD 7350
(Cedar)
January 2012 TeraScale 2[g]
40 nm
292×106
59 mm2
80:8:4 400
650
3.2
5.2
1.6
2.6
104 256
512
DDR2
DDR3
64-bit
400
800
900
6.4
12.8
14.4
6.4 19.1 PCIe 2.1 ×16 OEM
Radeon HD 7450
(Caicos)
January 2012 370×106
67 mm2
160:8:4 625
750
5.0
6.0
2.5
3.0
200
240
512
1024
DDR3
64-bit
533
800
8.5
12.8
9 18 PCIe 2.1 ×16 OEM
Radeon HD 7470
(Caicos)
January 2012 160:8:4 625
775
5.0
6.2
2.5
3.1
200
248
512
1024
DDR3
GDDR5
64-bit
800
900

12.8
28.8

9 27 PCIe 2.1 ×16 OEM
Radeon HD 7510
(Turks LE)
February 2013 716×106
118 mm2
320:16:4 650 10.4 2.6 416 1024 DDR3
128-bit
667 21.3 Un­known Un­known PCIe 2.1 ×16 OEM
Radeon HD 7570
(Turks Pro-L)
January 2012 480:24:8 650 15.6 5.2 624 512
1024
DDR3
GDDR5
128-bit
900
1000

28.8
64

10
11
44
60
PCIe 2.1 ×16 OEM
Radeon HD 7670
(Turks XT)
January 2012 480:24:8 800 19.2 6.4 768 512
1024
GDDR5
128-bit
1000 64 12 66 PCIe 2.1 ×16 OEM
Radeon HD 7730
(Cape Verde LE)
April 2013 GCN 1st gen
28 nm
1500×106
123 mm2
384:24:8 800 19.2 6.4 614.4 38.4 1024 DDR3
GDDR5
128-bit
1125 25.6
72

10 47 PCIe 3.0 ×16 $60
Radeon HD 7750
(Cape Verde Pro)
February 2012 512:32:16 800
900
25.6
28.8
12.8
14.4
819.2
921.6
51.2
57.6
1024
2048
4096
DDR3
GDDR5
128-bit
800
1125

25.6
72

10 55 PCIe 3.0 ×16 $110
Radeon HD 7770
GHz Edition
(Cape Verde XT)
February 2012 640:40:16 1000 40 16 1280 80 1024
2048
GDDR5
128-bit
1125 72 10 80 PCIe 3.0 ×16 $160
Radeon HD 7790
(Bonaire XT)
March 2013 GCN 2nd gen
28 nm
2080×106
160 mm2
896:56:16 1000 56.0 16.0 1792 128 1024
2048
GDDR5
128-bit
1500 96 10 85 PCIe 3.0 ×16 $150
Radeon HD 7850
(Pitcairn Pro)
March 2012 GCN 1st gen
28 nm
2800×106
212 mm2
1024:64:32 860 55.04 27.52 1761.28 110.08 1024
2048
GDDR5
256-bit
1200 153.6 10 130 PCIe 3.0 ×16 $250
Radeon HD 7870
GHz Edition
(Pitcairn XT)
March 2012 1280:80:32 1000 80 32 2560 160 2048 1200 153.6 10 175 PCIe 3.0 ×16 $350
Radeon HD 7870 XT
(Tahiti LE)
November 2012 4313×106
352 mm2
1536:96:32 925
975
88.8 29.6 2841.6
2995.2
710.4
748.8
2048 GDDR5
256-bit
1500 192.0 15 185 PCIe 3.0 ×16 $270
Radeon HD 7950
(Tahiti Pro)
January 2012 1792:112:32 800 89.6 25.6 2867.2 717 3072 GDDR5
384-bit
1250 240 15 200 PCIe 3.0 ×16 $450
Radeon HD 7950 Boost
(Tahiti Pro2)
August 2012 1792:112:32 850
925
103.6 29.6 3046.4
3315.2
761.6
828.8
3072 GDDR5
384-bit
1250 240 15 225 PCIe 3.0 ×16 $330
Radeon HD 7970
(Tahiti XT)
December 2011 2048:128:32 925 118.4 29.6 3788.8 947.2 3072
6144
GDDR5
384-bit
1375 264 15 250 PCIe 3.0 ×16 $550
Radeon HD 7970
GHz Edition
(Tahiti XT2)
June 2012 2048:128:32 1000
1050
128.0 32 4096
4300.8
1024
1075
3072
6144
GDDR5
384-bit
1500 288 15 250 PCIe 3.0 ×16 $500
Radeon HD 7990
(New Zealand)
April 2013 4313×106
352 mm2
2× 2048:128:32 950
1000
2× 128 2× 32 7782.4
8192
1945.6
2048
2× 3072 GDDR5
384-bit
1500 2× 288 15 375 PCIe 3.0 ×16 $1000
Model
(Codename)
Launch Architecture
Fab
Transistors
Die Size
Config[f] Clock[a] (MHz) Texture (GT/s) Pixel (GP/s) Single Double Size (MiB) Bus type
& width
Clock
(MHz)
Bandwidth (GB/s) Idle Max. Bus interface Release Price (USD)
Core Fillrate[a][b][c] Processing power[a][d]
(GFLOPS)
Memory[e] TDP (Watts)
  1. ^ a b c d e f Boost values (if available) are stated below the base value in italic.
  2. ^ a b Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
  3. ^ a b Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
  4. ^ a b Precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  5. ^ a b The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with DDR memory.
  6. ^ a b Unified Shaders : Texture Mapping Units : Render Output Units
  7. ^ Lacks hardware video encoder


IGP (HD 7xxx)

edit
  • All models feature the UNB/MC Bus interface
  • All models do not feature double-precision FP
  • All models feature angle independent anisotropic filtering, UVD3.2, and Eyefinity capabilities, with up to four outputs.
  • All models are based on the TeraScale 3 (VLIW4) used in the Radeon HD 69xx Series (Cayman) GPUs.


Model Launch Code name Architecture Fab (nm) Core Clock (MHz) Config core[a] Fillrate Shared Memory Processing power
(GFLOPS)
API compliance (version) TDP (W)[b] APU
Base Turbo Texture (GT/s) Pixel (GP/s) Bus width (bit) Bus type Bandwidth (GB/s) Direct3D OpenGL[c] OpenCL
Radeon HD 7310[26] June 6, 2012 Ontario TeraScale 2[d] 40 500 80:8:4 4.00 2.00 64 DDR3-1066 8.53 80 11.3
(11_0)
4.5 1.2 18 E2-1200
Radeon HD 7340[26] 523 680 5.44 2.72 DDR3-1333 10.66 83.6–108.8 E2-1800
Radeon HD 7480D June 1, 2012 Scrapper TeraScale 3[d] 32 723 128:8:4 11.6 2.9 128 DDR3-1600 25.6 185 65 A4-4000, A4-5300
Radeon HD 7540D 760 192:12:4 Un­known DDR3-1866 29.9 292 A6-5400K
Radeon HD 7560D Devastator 256:16:4 389 65–100 A8-5500, A8-5600K
Radeon HD 7660D 760 800 384:24:8 16.2 2.7 584–614 A10-5700 (760 MHz), A10-5800K (800 MHz)
  1. ^ Unified Shaders : Texture Mapping Units : Render Output Units
  2. ^ TDP specified for AMD reference designs, includes CPU power consumption. Actual TDP of retail products may vary.
  3. ^ OpenGL 4.5 possible for Terascale 3 with AMD Radeon Software Crimson Beta (driver 15.30 or higher).[25]
  4. ^ a b Lacks hardware video encoder


Mobile products

edit
 
A Radeon HD 7970M GPU on a Mobile PCI Express Module
Model
(Codename)
Launch Architecture
(Fab)
Core Fillrate Processing power
(GFLOPS)
Memory Bus interface TDP (W)
Config[a] Clock (MHz) Texture (GT/s) Pixel (GP/s) Size (GiB) Bus type &
width (bit)[b]
Memory (MHz) Bandwidth (GB/s)
Radeon HD 7430M
(Seymour Pro)
January 2012 TeraScale 2[c]
(40 nm)
160:8:4:2 600 4.8 2.4 192 1 DDR3
64-bit
900 14.4 PCIe 2.1 ×16 7
Radeon HD 7450M
(Seymour Pro)
700
700
5.6 2.8 224 1 DDR3
GDDR5
64-bit
900
800

14.4
25.6

7
Radeon HD 7470M
(Seymour XT)
750
800
6
6.4
3.0
3.2
240
256
1 DDR3
GDDR5
64-bit
900
800

14.4
25.6

7~9
Radeon HD 7490M
(Seymour XTX)
800 6.4 3.2 256 1 GDDR5
64-bit
950 30.4 9
Radeon HD 7510M
(Thames LE)
January 2012 TeraScale 2[c]
(40 nm)
400:20:8:5 450 9.0 3.6 360 1 DDR3
64-bit
800 12.8 11
Radeon HD 7530M
(Thames LP)
January 2012 TeraScale 2[c]
(40 nm)
400:24:8:5 450 9.0 3.6 360 1 DDR3
64-bit
900 14.4 11
Radeon HD 7550M
(Thames Pro)
January 2012 TeraScale 2[c]
(40 nm)
400:20:8:5 450
550
9.0
11.0
3.6
4.4
360
440
1 DDR3
GDDR5
64-bit
900
800

14.4
25.6

13
Radeon HD 7570M
(Thames Pro)
January 2012 TeraScale 2[c]
(40 nm)
400:20:8:5 450
650
9.0
13.0
3.6
5.2
360
520
1 DDR3
GDDR5
64-bit
900
800

14.4
25.6

13~15
Radeon HD 7590M
(Thames XT)
January 2012 TeraScale 2[c]
(40 nm)
480:24:8:6 600 14.4 4.8 576 1 GDDR5
64-bit
800 25.6 18
Radeon HD 7610M
(Thames LE)
January 2012 TeraScale 2[c]
(40 nm)
400:20:8:5 450 9.0 3.6 360 1 DDR3
128-bit
800 25.6 20
Radeon HD 7630M
(Thames LP)
January 2012 TeraScale 2[c]
(40 nm)
480:24:8:6 450 10.8 3.6 432 1 DDR3
128-bit
800 25.6 20~25
Radeon HD 7650M
(Thames Pro)
450
550
10.8
13.2
3.6
4.4
432
528
1 DDR3
128-bit
800
800
25.6 20~25
Radeon HD 7670M
(Thames Pro)
600 14.4 4.8 576 1 DDR3
GDDR5
128-bit
900 28.8
57.6

20~25
Radeon HD 7690M
(Thames XT)
725
600
17.4
14.4
5.8
4.8
696
576
1
2
DDR3
GDDR5
128-bit
900
900

28.8
57.6

20~25
Radeon HD 7690M XT
(Thames XTX)
725 17.4 5.8 696 1
2
GDDR5
128-bit
900 57.6 25
Radeon HD 7730M
(Chelsea LP)
April 2012 GCN 1st gen
(28 nm)
512:32:16:8 575
675
18.4
21.6
9.2
10.8
588.8
691.2
2 GDDR3
128-bit
900
900
28.8 PCIe 2.1 ×16 25~28
Radeon HD 7750M
(Chelsea Pro)
575 18.4 9.2 588.8 1
2
GDDR5
128-bit
1000 64 28
Radeon HD 7770M
(Chelsea XT)
675 21.6 10.8 691.2 1
2
GDDR5
128-bit
1000 64 32
Radeon HD 7850M
(Heathrow Pro)
April 2012 GCN 1st gen
(28 nm)
640:40:16:10 675 27 10.8 864 2 GDDR5
128-bit
1000 64 PCIe 3.0 ×16 40
Radeon HD 7870M
(Heathrow XT)
800 32 12.8 1024 2 GDDR5
128-bit
1000 64 40–45
Radeon HD 7970M
(Wimbledon XT)
April 2012 GCN 1st gen
(28 nm)
1280:80:32:20 850 68 27.2 2176 2
4
GDDR5
256-bit
1200 153.6 PCIe 3.0 ×16 75
  1. ^ Unified Shaders : Texture Mapping Units : Render Output Units
  2. ^ The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
  3. ^ a b c d e f g h Lacks hardware video encoder

Integrated (IGP) products

edit
Model
(Codename)
Launch Architecture
(Fab)
Core config[a] Clock rate (MHz) Fillrate Processing power
(GFLOPS)
Shared memory
Core (MHz) Boost (MHz) Pixel (GP/s) Texture (GT/s) Bus type
& width (bit)
Clock Bandwidth (GB/s)
Radeon HD 7400G
(Scrapper)
September 2012 TeraScale 3[b]
(32 nm)
192:12:4 327 424 1.31 3.92 125.57 DDR3
128-bit
1333 to 2133 21.33–34.13
Radeon HD 7420G
(Scrapper)
June 2012 128:8:4 480 655 1.92 3.84 122.88
Radeon HD 7500G
(Scrapper)
May 2012 256:16:8 327 424 2.62 5.23 167.42
Radeon HD 7520G
(Scrapper)
June 2012 192:12:4 496 685 1.98 5.95 190.46
Radeon HD 7600G
(Devastator)
September 2012 384:24:8 320 424 2.56 7.68 245.76
Radeon HD 7620G
(Devastator)
May 2012 360 497 2.88 8.64 276.48
Radeon HD 7640G
(Devastator)
256:16:8 496 685 3.97 7.94 253.95
Radeon HD 7660G
(Devastator)
384:24:8 11.9 380.93
  1. ^ Unified Shaders : Texture Mapping Units : Render Output Units
  2. ^ Lacks hardware video encoder

Radeon Feature Matrix

edit

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage 128 R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands
/Polaris
Vega Navi 1x Navi 2x Navi 3x
Released 1986 1991 Apr
1996
Mar
1997
Aug
1998
Apr
2000
Aug
2001
Sep
2002
May
2004
Oct
2005
May
2007
Nov
2007
Jun
2008
Sep
2009
Oct
2010
Dec
2010
Jan
2012
Sep
2013
Jun
2015
Jun 2016, Apr 2017, Aug 2019 Jun 2017, Feb 2019 Jul
2019
Nov
2020
Dec
2022
Marketing Name Wonder Mach 3D
Rage
Rage
Pro
Rage
128
Radeon
7000
Radeon
8000
Radeon
9000
Radeon
X700/X800
Radeon
X1000
Radeon
HD 2000
Radeon
HD 3000
Radeon
HD 4000
Radeon
HD 5000
Radeon
HD 6000
Radeon
HD 7000
Radeon
200
Radeon
300
Radeon
400/500/600
Radeon
RX Vega, Radeon VII
Radeon
RX 5000
Radeon
RX 6000
Radeon
RX 7000
AMD support    
Kind 2D 3D
Instruction set architecture Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1
(VLIW)
TeraScale 2
(VLIW5)
TeraScale 2
(VLIW5)

up to 68xx
TeraScale 3
(VLIW4)

in 69xx [27][28]
GCN 1st
gen
GCN 2nd
gen
GCN 3rd
gen
GCN 4th
gen
GCN 5th
gen
RDNA RDNA 2 RDNA 3
Type Fixed pipeline[a] Programmable pixel & vertex pipelines Unified shader model
Direct3D 5.0 6.0 7.0 8.1 9.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0) 11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
11 (12_1)
12 (12_2)
Shader model 1.4 2.0+ 2.0b 3.0 4.0 4.1 5.0 5.1 5.1
6.5
6.7
OpenGL 1.1 1.2 1.3 2.1[b][29] 3.3 4.5[30][31][32][c] 4.6
Vulkan 1.1 1.3[33] 1.4[34]
OpenCL Close to Metal 1.1 (not supported by Mesa) 1.2+ (on Linux: 1.1+ (no Image support on clover, with by rustiCL) with Mesa, 1.2+ on GCN 1.Gen) 2.0+ (Adrenalin driver on Win7+)
(on Linux ROCM, Mesa 1.2+ (no Image support in clover, but in rustiCL with Mesa, 2.0+ and 3.0 with AMD drivers or AMD ROCm), 5th gen: 2.2 win 10+ and Linux RocM 5.0+
2.2+ and 3.0 windows 8.1+ and Linux ROCM 5.0+ (Mesa rustiCL 1.2+ and 3.0 (2.1+ and 2.2+ wip))[35][36][37]
HSA / ROCm   ?
Video decoding ASIC Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7 [38][d] VCN 2.0 [38][d] VCN 3.0 [39] VCN 4.0
Video encoding ASIC VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0 [38][d]
Fluid Motion [e]       ?
Power saving ? PowerPlay PowerTune PowerTune & ZeroCore Power ?
TrueAudio Via dedicated DSP Via shaders
FreeSync 1
2
HDCP[f] ? 1.4 2.2 2.3 [40]
PlayReady[f] 3.0   3.0
Supported displays[g] 1–2 2 2–6 ?
Max. resolution ? 2–6 ×
2560×1600
2–6 ×
4096×2160 @ 30 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz [41]

7680×4320 @ 60 Hz PowerColor
7680x4320

@165 HZ

/drm/radeon[h]  
/drm/amdgpu[h] Optional [42]  
  1. ^ The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. ^ R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. ^ OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. ^ a b c The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. ^ Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
  6. ^ a b To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  7. ^ More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  8. ^ a b DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.

Graphics device drivers

edit

AMD's proprietary graphics device driver "Catalyst"

edit

AMD Catalyst is being developed for Microsoft Windows and Linux. As of July 2014, other operating systems are not officially supported. This may be different for the AMD FirePro brand, which is based on identical hardware but features OpenGL-certified graphics device drivers.

AMD Catalyst supports all features advertised for the Radeon brand.

Free and open-source graphics device driver "Radeon"

edit

The free and open-source drivers are primarily developed on Linux and for Linux, but have been ported to other operating systems as well. Each driver is composed out of five parts:

  1. Linux kernel component DRM
  2. Linux kernel component KMS driver: basically the device driver for the display controller
  3. user-space component libDRM
  4. user-space component in Mesa 3D;
  5. a special and distinct 2D graphics device driver for X.Org Server, which if finally about to be replaced by Glamor

The free and open-source "Radeon" graphics driver supports most of the features implemented into the Radeon line of GPUs.[5]

The free and open-source "Radeon" graphics device drivers are not reverse engineered, but based on documentation released by AMD.[43]

See also

edit

Notes

edit
  1. ^ Corresponding to 32 cores in "the closest reasonable mapping to the equivalent in a CPU".[21]: 60 

References

edit
  1. ^ "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.
  2. ^ "AMD Radeon Software Crimson Edition 16.3 Release Notes". AMD. Retrieved 2018-04-20.
  3. ^ "AMDGPU-PRO Driver for Linux Release Notes". 2017. Archived from the original on 2017-01-27. Retrieved 2018-04-23.
  4. ^ "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  5. ^ a b "RadeonFeature". X.Org Foundation. Retrieved 2018-04-20.
  6. ^ "AMD Adrenalin 18.4.1 Graphics Driver Released (OpenGL 4.6, Vulkan 1.1.70) | Geeks3D". May 2018.
  7. ^ "AMD Open Source Driver for Vulkan". GPUOpen. Retrieved 2018-04-20.
  8. ^ "AMD Catalyst 15.7.1 Driver for Windows® Release Notes". AMD. Retrieved 2018-04-20.
  9. ^ Demerjian, Charlie (April 6, 2011). "AMD will out the 'Southern Islands' GPU architecture early". SemiAccurate. Retrieved October 1, 2013.
  10. ^ "Report: TSMC wins key 40-, 28-nm deals". EETimes. Archived from the original on August 20, 2011. Retrieved 2011-06-28.
  11. ^ Charlie Demerjian (July 19, 2011). "Southern Islands, Kepler, and Apple's A6 process puzzle outed". Retrieved December 1, 2013.
  12. ^ Advanced Micro Devices, Inc. (22 April 2018). "Conformant Products (submission 318)". The Khronos Group Inc.
  13. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 799)". The Khronos Group Inc.
  14. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 798)". The Khronos Group Inc.
  15. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 797)". The Khronos Group Inc.
  16. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 796)". The Khronos Group Inc.
  17. ^ "AMD Eyefinity: FAQ". AMD. 2011-05-17. Retrieved 2014-07-02.
  18. ^ "The Khronos Group". 15 June 2022.
  19. ^ a b "Review: AMD Radeon HD 7850 & 7870" (in French). BeHardware. March 5, 2012. Retrieved August 22, 2013.
  20. ^ "AMD Radeon HD 7000 series reviewed". Hardware.Info. Retrieved 2017-08-28.
  21. ^ Gaster, Benedict; Howes, Lee; Kaeli, David R.; Mistry, Perhaad; Schaa, Dana (2012). Heterogeneous Computing with OpenCL: Revised OpenCL 1.2 Edition. Morgan Kaufmann.
  22. ^ "AMD Radeon HD 7870 GHz Edition & Radeon HD 7850 Review: Rounding Out Southern Islands". AnandTech. Retrieved August 22, 2013.
  23. ^ Woligroski, Don (5 August 2013). "AMD Radeon HD 7730 Review: A Harbinger Of The Kaveri APU? | Tom's Hardware". Tomshardware.com. Retrieved 2022-05-13.
  24. ^ "AMD launches Radeon 7790: Meet the Xbox 720's GPU". ExtremeTech. 2013-03-22. Retrieved 2013-11-10.
  25. ^ "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.
  26. ^ a b "AMD Reveals Brazos 2.0 APUs and FCH". AnandTech. Purch Group.
  27. ^ "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
  28. ^ "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.
  29. ^ "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.
  30. ^ "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.
  31. ^ "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  32. ^ "RadeonFeature". X.Org Foundation. Retrieved 2018-04-20.
  33. ^ "Conformant Products". Khronos Group. Retrieved 2024-12-02.
  34. ^ "radv: add Vulkan 1.4 support". Mesa. Retrieved 2024-12-02.
  35. ^ "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.
  36. ^ "AMD Launches The Radeon PRO W7500/W7600 RDNA3 GPUs". Phoronix. 3 August 2023. Retrieved 4 September 2023.
  37. ^ "AMD Radeon Pro 5600M Grafikkarte". TopCPU.net (in German). Retrieved 4 September 2023.
  38. ^ a b c Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.
  39. ^ Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.
  40. ^ Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.
  41. ^ "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.
  42. ^ "AMDGPU". Retrieved December 29, 2023.
  43. ^ "AMD Developer Guideds".
edit