Isotopes of sodium

(Redirected from Sodium-25)

There are 20 isotopes of sodium (11Na), ranging from 17
Na
to 39
Na
(except for the still-unknown 36Na and 38Na),[4] and five isomers (two for 22
Na
, and one each for 24
Na
, 26
Na
, and 32
Na
). 23
Na
is the only stable (and the only primordial) isotope. It is considered a monoisotopic element and it has a standard atomic weight of 22.98976928(2). Sodium has two radioactive cosmogenic isotopes (22
Na
, with a half-life of 2.6019(6) years;[nb 1] and 24
Na
, with a half-life of 14.9560(15) h). With the exception of those two isotopes, all other isotopes have half-lives under a minute, most under a second. The shortest-lived is the unbound 18
Na
, with a half-life of 1.3(4)×10−21 seconds (although the half-life of the similarly unbound 17Na is not measured).

Isotopes of sodium (11Na)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
22Na trace 2.6019 y β+ 22Ne
23Na 100% stable
24Na trace 14.9560 h β 24Mg
Standard atomic weight Ar°(Na)

Acute neutron radiation exposure (e.g., from a nuclear criticality accident) converts some of the stable 23
Na
(in the form of Na+ ion) in human blood plasma to 24
Na
. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.

22
Na
is a positron-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for positron emission tomography.

List of isotopes

edit


Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Isotopic
abundance
Excitation energy
17
Na
11 6 17.037270(60) p 16
Ne
(1/2+)
18
Na
11 7 18.02688(10) 1.3(4) zs p ?[n 8] 17
Ne
1−#
19
Na
11 8 19.013880(11) > 1 as p 18
Ne
(5/2+)
20
Na
11 9 20.0073543(12) 447.9(2.3) ms β+ (75.0(4)%) 20
Ne
2+
β+α (25.0(4)%) 16
O
21
Na
11 10 20.99765446(5) 22.4550(54) s β+ 21
Ne
3/2+
22
Na
11 11 21.99443742(18) 2.6019(6) y[nb 1] β+ (90.57(8)%) 22
Ne
3+ Trace[n 9]
ε (9.43(6)%) 22
Ne
22m1
Na
583.05(10) keV 243(2) ns IT 22
Na
1+
22m2
Na
657.00(14) keV 19.6(7) ps IT 22
Na
0+
23
Na
11 12 22.9897692820(19) Stable 3/2+ 1
24
Na
11 13 23.990963012(18) 14.9560(15) h β 24
Mg
4+ Trace[n 9]
24m
Na
472.2074(8) keV 20.18(10) ms IT (99.95%) 24
Na
1+
β (0.05%) 24
Mg
25
Na
11 14 24.9899540(13) 59.1(6) s β 25
Mg
5/2+
26
Na
11 15 25.992635(4) 1.07128(25) s β 26
Mg
3+
26m
Na
82.4(4) keV 4.35(16) μs IT 26
Na
1+
27
Na
11 16 26.994076(4) 301(6) ms β (99.902(24)%) 27
Mg
5/2+
βn (0.098(24)%) 26
Mg
28
Na
11 17 27.998939(11) 33.1(1.3) ms β (99.42(12)%) 28
Mg
1+
βn (0.58(12)%) 27
Mg
29
Na
11 18 29.002877(8) 43.2(4) ms β (78%) 29
Mg
3/2+
βn (22(3)%) 28
Mg
β2n ?[n 10] 27
Mg
 ?
30
Na
11 19 30.009098(5) 45.9(7) ms β (70.2(2.2)%) 30
Mg
2+
βn (28.6(2.2)%) 29
Mg
β2n (1.24(19)%) 28
Mg
βα (5.5(2)%×10−5) 26
Ne
31
Na
11 20 31.013147(15) 16.8(3) ms β (> 63.2(3.5)%) 31
Mg
3/2+
βn (36.0(3.5)%) 30
Mg
β2n (0.73(9)%) 29
Mg
β3n (< 0.05%) 28
Mg
32
Na
11 21 32.020010(40) 12.9(3) ms β (66.4(6.2)%) 32
Mg
(3−)
βn (26(6)%) 31
Mg
β2n (7.6(1.5)%) 30
Mg
32m
Na
[6]
625 keV 24(2) μs IT 32
Na
(0+,6−)
33
Na
11 22 33.02553(48) 8.2(4) ms βn (47(6)%) 32
Mg
(3/2+)
β (40.0(6.7)%) 33
Mg
β2n (13(3)%) 31
Mg
34
Na
11 23 34.03401(64) 5.5(1.0) ms β2n (~50%) 32
Mg
1+
β (~35%) 34
Mg
βn (~15%) 33
Mg
35
Na
11 24 35.04061(72)# 1.5(5) ms β 35
Mg
3/2+#
βn ?[n 10] 34
Mg
 ?
β2n ?[n 10] 33
Mg
 ?
37
Na
11 26 37.05704(74)# 1# ms [> 1.5 μs] β ?[n 10] 37
Mg
 ?
3/2+#
βn ?[n 10] 36
Mg
 ?
β2n ?[n 10] 35
Mg
 ?
39
Na
[4]
11 28 39.07512(80)# 1# ms [> 400 ns] β ?[n 10] 39
Mg
 ?
3/2+#
βn ?[n 10] 38
Mg
 ?
β2n ?[n 10] 37
Mg
 ?
This table header & footer:
  1. ^ mNa – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Decay mode shown has been observed, but its intensity is not known experimentally.
  9. ^ a b Cosmogenic nuclide
  10. ^ a b c d e f g h i Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

Sodium-22

edit
 
Disk containing 1 μCi of sodium-22

Sodium-22 is a radioactive isotope of sodium, undergoing positron emission to 22
Ne
with a half-life of 2.6019(6) years. 22
Na
is being investigated as an efficient generator of "cold positrons" (antimatter) to produce muons for catalyzing fusion of deuterium.[citation needed] It is also commonly used as a positron source in positron annihilation spectroscopy.[7]

Sodium-23

edit

Sodium-23 is an isotope of sodium with an atomic mass of 22.98976928. It is the only stable isotope of sodium and also the only primordial isotope. Because of its abundance, sodium-23 is used in nuclear magnetic resonance in various research fields, including materials science and battery research.[8] Sodium-23 relaxation has applications in studying cation-biomolecule interactions, intracellular and extracellular sodium, ion transport in batteries, and quantum information processing.[9]

Sodium-24

edit

Sodium-24 is radioactive and can be created from common sodium-23 by neutron activation. With a half-life of 14.9560(15) h, 24
Na
decays to 24
Mg
by emission of an electron and two gamma rays.[10][11]

Exposure of the human body to intense neutron radiation creates 24
Na
in the blood plasma. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.[11] This can be used to determine the type of medical treatment required.

When sodium is used as coolant in fast breeder reactors, 24
Na
is created, which makes the coolant radioactive. When the 24
Na
decays, it causes a buildup of magnesium in the coolant. Since the half-life is short, the 24
Na
portion of the coolant ceases to be radioactive within a few days after removal from the reactor. Leakage of the hot sodium from the primary loop may cause radioactive fires,[12] as it can ignite in contact with air (and explodes in contact with water). For this reason the primary cooling loop is within a containment vessel.

Sodium has been proposed as a casing for a salted bomb, as it would convert to 24
Na
and produce intense gamma-ray emissions for a few days.[13][14]

Notes

edit
  1. ^ a b Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s

References

edit
  1. ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Sodium". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b Ahn, D.S.; et al. (2022-11-14). "Discovery of 39Na". Physical Review Letters. 129 (21) 212502: 212502. Bibcode:2022PhRvL.129u2502A. doi:10.1103/PhysRevLett.129.212502. PMID 36461972. S2CID 253591660.
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Gray, T. J.; Allmond, J. M.; Xu, Z.; King, T. T.; Lubna, R. S.; Crawford, H. L.; Tripathi, V.; Crider, B. P.; Grzywacz, R.; Liddick, S. N.; Macchiavelli, A. O.; Miyagi, T.; Poves, A.; Andalib, A.; Argo, E.; Benetti, C.; Bhattacharya, S.; Campbell, C. M.; Carpenter, M. P.; Chan, J.; Chester, A.; Christie, J.; Clark, B. R.; Cox, I.; Doetsch, A. A.; Dopfer, J.; Duarte, J. G.; Fallon, P.; Frotscher, A.; Gaballah, T.; Harke, J. T.; Heideman, J.; Huegen, H.; Holt, J. D.; Jain, R.; Kitamura, N.; Kolos, K.; Kondev, F. G.; Laminack, A.; Longfellow, B.; Luitel, S.; Madurga, M.; Mahajan, R.; Mogannam, M. J.; Morse, C.; Neupane, S.; Nowicki, A.; Ogunbeku, T. H.; Ong, W.-J.; Porzio, C.; Prokop, C. J.; Rasco, B. C.; Ronning, E. K.; Rubino, E.; Ruland, T. J.; Rykaczewski, K. P.; Schaedig, L.; Seweryniak, D.; Siegl, K.; Singh, M.; Stuchbery, A. E.; Tabor, S. L.; Tang, T. L.; Wheeler, T.; Winger, J. A.; Wood, J. L. (13 June 2023). "Microsecond Isomer at the N = 20 Island of Shape Inversion Observed at FRIB". Physical Review Letters. 130 (24). arXiv:2302.11607. doi:10.1103/PhysRevLett.130.242501.
  7. ^ Saro, Matúš; Kršjak, Vladimír; Petriska, Martin; Slugeň, Vladimír (2019-07-29). "Sodium-22 source contribution determination in positron annihilation measurements using GEANT4". AIP Conference Proceedings. 2131 (1): 020039. Bibcode:2019AIPC.2131b0039S. doi:10.1063/1.5119492. ISSN 0094-243X. S2CID 201349680.
  8. ^ Gotoh, Kazuma (8 February 2021). "23Na Solid-State NMR Analyses for Na-Ion Batteries and Materials". Batteries & Supercaps. 4 (8): 1267–127. doi:10.1002/batt.202000295. S2CID 233827472.
  9. ^ Song, Yifan; Yin, Yu; Chen, Qinlong; Marchetti, Alessandro; Kong, Xueqian (2023). "23Na relaxometry: An overview of theory and applications". Magnetic Resonance Letters. 3 (2): 150–174. doi:10.1016/j.mrl.2023.04.001.
  10. ^ "sodium-24". Encyclopædia Britannica.
  11. ^ a b Ekendahl, Daniela; Rubovič, Peter; Žlebčík, Pavel; Hupka, Ivan; Huml, Ondřej; Bečková, Věra; Malá, Helena (7 November 2019). "Neutron dose assessment using samples of human blood and hair". Radiation Protection Dosimetry. 186 (2–3): 202–205. doi:10.1093/rpd/ncz202. PMID 31702764.
  12. ^ Unusual occurrences during LMFR operation, Proceedings of a Technical Committee meeting held in Vienna, 9–13 November 1998, IAEA. Pages 84, 122.
  13. ^ "Science: fy for Doomsday". Time. November 24, 1961. Archived from the original on March 14, 2016.
  14. ^ Clark, W. H. (1961). "Chemical and Thermonuclear Explosives". Bulletin of the Atomic Scientists. 17 (9): 356–360. Bibcode:1961BuAtS..17i.356C. doi:10.1080/00963402.1961.11454268.
edit