Local asymptotic normality

In statistics, local asymptotic normality is a property of a sequence of statistical models, which allows this sequence to be asymptotically approximated by a normal location model, after an appropriate rescaling of the parameter. An important example when the local asymptotic normality holds is in the case of i.i.d sampling from a regular parametric model.

The notion of local asymptotic normality was introduced by Le Cam (1960) and is fundamental in the treatment of estimator and test efficiency.[1]

Definition

edit

A sequence of parametric statistical models { Pn,θ: θ ∈ Θ } is said to be locally asymptotically normal (LAN) at θ if there exist matrices rn and Iθ and a random vector Δn,θ ~ N(0, Iθ) such that, for every converging sequence hnh,[2]

 

where the derivative here is a Radon–Nikodym derivative, which is a formalised version of the likelihood ratio, and where o is a type of big O in probability notation. In other words, the local likelihood ratio must converge in distribution to a normal random variable whose mean is equal to minus one half the variance:

 

The sequences of distributions   and   are contiguous.[2]

Example

edit

The most straightforward example of a LAN model is an iid model whose likelihood is twice continuously differentiable. Suppose { X1, X2, …, Xn} is an iid sample, where each Xi has density function f(x, θ). The likelihood function of the model is equal to

 

If f is twice continuously differentiable in θ, then

 

Plugging in  , gives

 

By the central limit theorem, the first term (in parentheses) converges in distribution to a normal random variable Δθ ~ N(0, Iθ), whereas by the law of large numbers the expression in second parentheses converges in probability to Iθ, which is the Fisher information matrix:

 

Thus, the definition of the local asymptotic normality is satisfied, and we have confirmed that the parametric model with iid observations and twice continuously differentiable likelihood has the LAN property.

See also

edit

Notes

edit
  1. ^ Vaart, A. W. van der (1998-10-13). Asymptotic Statistics. Cambridge University Press. ISBN 978-0-511-80225-6.
  2. ^ a b van der Vaart (1998, pp. 103–104)

References

edit
  • Ibragimov, I.A.; Has’minskiĭ, R.Z. (1981). Statistical estimation: asymptotic theory. Springer-Verlag. ISBN 0-387-90523-5.
  • Le Cam, L. (1960). "Locally asymptotically normal families of distributions". University of California Publications in Statistics. 3: 37–98.
  • van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press. ISBN 978-0-521-78450-4.