The Lick Observatory is an astronomical observatory owned and operated by the University of California. It is on the summit of Mount Hamilton, in the Diablo Range just east of San Jose, California, United States. The observatory is managed by the University of California Observatories, with headquarters on the University of California, Santa Cruz campus, where its scientific staff moved in the mid-1960s. It is named after James Lick.

Lick Observatory
The James Lick telescope, housed in the South (large) Dome of main building
Alternative nameslick Edit this at Wikidata
Named afterJames Lick Edit this on Wikidata
Organization
Observatory code 662 Edit this on Wikidata
Locationnear San Jose, California
Coordinates37°20′28″N 121°38′35″W / 37.3411°N 121.6431°W / 37.3411; -121.6431
Altitude1,283 m (4,209 ft) Edit this at Wikidata
Websiteucolick.org/main/ Edit this at Wikidata
Telescopes
Lick Observatory is located in the United States
Lick Observatory
Location of Lick Observatory
  Related media on Commons

The first new moon of Jupiter to be identified since the time of Galileo, Amalthea, the planet's fifth moon, was discovered at this observatory in 1892.

Early history

edit

Lick Observatory is the world's first permanently occupied mountain-top observatory.[1] The observatory, in a Classical Revival style structure, was constructed between 1876 and 1887, from a bequest from James Lick of $700,000, equivalent to $23,737,778 in 2023.[2][3] Lick, originally a carpenter and piano maker, had arrived from Peru in San Francisco, California, in late 1847; after accruing significant wealth he began making various donations in 1873.[4] In his last deed he chose the site atop Mount Hamilton,[4] and was buried there in 1887 under the future site of the telescope,[2] with a brass tablet bearing the inscription, "Here lies the body of James Lick".[5]

 
Layout of the Lick Observatory. The dome housing the 91-centimeter (36-inch) Great Lick refractor telescope is on the right.
 
Lick Observatory in 1900

Lick additionally negotiated that Santa Clara County construct a "first-class road" to the summit, completed in 1876.[2] Lick chose John Wright, of San Francisco's Wright & Sanders firm of architects, to design both the Observatory and the Astronomer's House.[6] All of the construction materials had to be brought to the site by horse and mule-drawn wagons, which could not negotiate a steep grade. To keep the grade below 6.5%, the road had to take a very winding and sinuous path, which the modern-day road (California State Route 130) still follows. The road from Smith Creek to the summit makes 367 complete turns, in a distance of seven miles.[7] The road is closed when there is snow.[8]

The first telescope installed at the observatory was a 12-inch (300-millimeter) refractor made by Alvan Clark. Astronomer E. E. Barnard used the telescope to make "exquisite photographs of comets and nebulae", according to D. J. Warner of Warner & Swasey Company.[2]

 
The Great Lick 91-centimeter (36-inch) refractor, in an 1889 engraving

In 1880, a 36-inch (91-centimeter) lens was commissioned to Alvan Clark & Sons, for $51,000 (equivalent to $1,610,000 in 2023). Manufacturing of the lens took until 1885 and it was delivered to :the observatory on December 29, 1886.[4] Warner & Swasey designed and built the telescope mounting. The telescope, built with this lens, became the world's largest refracting telescope from when it saw first light on January 3, 1888, until the construction of Yerkes Observatory in 1897.[2]

Under the University of California

edit

In May 1888, the observatory was turned over to the Regents of the University of California,[9] and it became the first permanently occupied mountain-top observatory in the world. Edward Singleton Holden was the first director. The location provided excellent viewing performance because of lack of ambient light and pollution; additionally, the night air at the top of Mt. Hamilton is extremely calm. Often a layer of low coastal clouds invades the valley below, especially on nights from late-spring to mid-summer, a phenomenon known in California as the June Gloom. On nights when the observatory remains above that layer, light pollution can be greatly reduced.[citation needed]

E. E. Barnard used the telescope in 1892 to discover a fifth moon of Jupiter, Amalthea. This was the first addition to Jupiter's known moons since Galileo observed the planet through his parchment tube and spectacle lens. The telescope provided spectra for W. W. Campbell's work on the radial velocities of stars.[2]

In 1905 (Jan. 5 and Feb. 27), Charles Dillon Perrine discovered the sixth and seventh moons of Jupiter (Elara and Himalia) on photographs taken with the 36-inch Crossley reflecting telescope which he had recently rebuilt.[10][11]

In 1928, Donald C. Shane studied carbon stars, and was able to distinguish them into spectral classes R0–R9 and N0–N7 (on this scale N7 is the reddest and R0 the bluest).[12] This was an expansion of Annie Jump Cannon of Harvard's work on carbon stars that had divided them into R and N types.[12] The N stars have more cyanogen and the R stars have more carbon.[12]

On May 21, 1939, during a nighttime fog that engulfed the summit, a U.S. Army Air Force Northrop A-17 two-seater attack plane crashed into the main building. Because a scientific meeting was being held elsewhere, the only staff member present was Nicholas Mayall. Nothing caught fire and the two individuals in the building were unharmed.

The pilot of the plane, Lt. Richard F. Lorenz, and passenger Private W. E. Scott were killed instantly. The telephone line was broken by the crash, so no help could be called for at first. Eventually help arrived together with numerous reporters and photographers, who kept arriving almost all night long. Evidence of their numbers could be seen the next day by the litter of flash bulbs carpeting the parking lot.

The press widely covered the accident and many reports emphasized the luck in not losing a large cabinet of spectrograms which was knocked over by the crash coming through an astronomer's office window. There was no damage to the telescope dome.[13][14][15][16]

In 1950, the California state legislature appropriated funds for a 120-inch (300-centimeter) reflector telescope, which was completed in 1959. The observatory additionally has a 24-inch (61-centimeter) Cassegrain reflector dedicated to photoelectric measurements of star brightness, and received a pair of 20-inch (51-centimeter) astrographs from the Carnegie Corporation.[2]

Time-signal service

edit

In 1886, Lick Observatory began supplying Railroad Standard Time to the Southern Pacific Railroad, and to other businesses, over telegraph lines. The signal was generated by a clock manufactured by E. Howard & Co. specifically for the Observatory, and which included an electric apparatus for transmitting the time signal over telegraph lines. While most of the nation's railroads received their time signal from the U.S. Naval Observatory time signal via Western Union's telegraph lines, the Lick Observatory time signal was used by railroads from the West Coast all the way to Colorado.[17]

21st century

edit
 
Lick Observatory from Grant Ranch Park
 
Lick Observatory and Mount Hamilton, looking east on takeoff from Mineta San José International Airport

With the growth of San Jose, and the rest of Silicon Valley, light pollution became a problem for the observatory. In the 1970s, a site in the Santa Lucia Mountains at Junípero Serra Peak, southeast of Monterey, was evaluated for possible relocation of many of the telescopes.[citation needed] However, funding for the move was not available, and in 1980 San Jose began a program to reduce the effects of lighting, most notably replacing all streetlamps with low pressure sodium lamps. The result is that the Mount Hamilton site remains a viable location for a major working observatory.

The International Astronomical Union named Asteroid 6216 San Jose to honor the city's efforts toward reducing light pollution.[18]

In 2006, there were 23 families in residence, plus typically between two and ten visiting astronomers from the University of California campuses, who stay in dormitories while working at the observatory. The little town of Mount Hamilton atop the mountain has its own police and a post office, and until 2005 had a one-room K-8 school.[19]

In 2008, there were 38 people residing on the mountain; the chef and commons dinner were decommissioned.[citation needed] By 2013, with continuing budget and staff cuts there remain only about nineteen residents and it is common for the observers to work from remote observing stations rather than make the drive, partly as a result of the business office raising the cost to stay in the dorms.[citation needed] The swimming pool has been closed.[20]

In 2013, one of Lick Observatory's key funding sources was scheduled for elimination in 2018, which many worried would result in the closing of the entire observatory.[21][22]

In November 2014, the University of California announced its intention to continue support of Lick Observatory.[23]

Telescopes at Lick Observatory are used by researchers from many campuses of the University of California system. Current topics of research carried out at Lick include exoplanets, supernovae, active galactic nuclei, planetary science, and development of new adaptive optics technologies.

In 2015, Google donated $1 million to the observatory over two years.[24]

In August 2020, the observatory was in danger of being destroyed by the rapidly growing SCU Lightning Complex fires. Firefighters were on standby at Lick Observatory to defend the buildings if necessary.[25] As of the evening of August 19, 2020, the fire was on observatory property and moving quickly.[26] While the residences on Mt. Hamilton sustained some damage during the following night, the telescopes and domes survived.[27]

Significant discoveries

edit
 
Simulation of Amalthea orbiting Jupiter

The following astronomical objects were discovered at Lick Observatory:

In addition to observations of natural phenomena, Lick was also the location of the first laser range-finding observation of the Apollo 11 reflector, although this was only for confirmation purposes and no ongoing range-finding work was performed.[41]

Equipment

edit
 
Lick Observatory's Shane 120-inch (3-meter) telescope (center) along with the nearby Automated Planet Finder 100-inch (250-centimeter) reflector

Below is a list of the nine telescopes currently operating at the observatory:[42]

  • The C. Donald Shane telescope 120-inch (3-meter) reflector (Shane Dome, Tycho Brahe Peak). Its instrumentation includes:
    • The Hamilton spectrometer
    • The Kast double spectrograph
    • The ShaneAO adaptive optics system with laser guide star
  • The Automated Planet Finder 94-inch (2.4-meter) reflector. First light was originally scheduled for 2006. The telescope finally came into regular use in 2013.
  • The Anna L. Nickel 39-inch (1-meter) reflector (North (small) Dome, Main Building)
  • The Great Lick 36-inch (91-centimeter) refractor (South Dome, Main Building, Observatory Peak)
  • The Crossley 35-inch (90-centimeter) reflector (Crossley Dome, Ptolemy Peak)
  • The Katzman Automatic Imaging Telescope (KAIT) 30-inch (76-centimeter) reflector (24-inch Dome, Kepler Peak)
  • The 24-inch (60-centimeter) Coudé Auxiliary Telescope (Inside of Shane Dome, South wall, Tycho Brahe Peak)
  • The Tauchmann 20-inch (50-centimeter) reflector (Tauchmann Dome atop the water tank, Huygens Peak)
  • The Carnegie 20-inch (50-centimeter) twin refractor (Double Astrograph Dome, Tycho Brahe Peak)

Below is a list of equipment that formerly operated at the observatory:

  • CCD Comet Camera 135-millimeter (5.3-inch) Nikon camera lens ("The Outhouse" Southwest of the Shane Dome, Tycho Brahe Peak)[citation needed]

See also

edit

References

edit

Citations

edit
  1. ^ "The Lick Observatory Collections Project: Building the Observatory". collections.ucolick.org. Retrieved March 19, 2018.
  2. ^ a b c d e f g Kirby-Smith, H. T. (1976). U.S. Observatories. New York, US: Litton Educational Publishing, Inc. ISBN 978-0-442-24451-4.
  3. ^ "Lick Observatory, Mt. Hamilton, Cal". loc.gov. Retrieved March 19, 2018.
  4. ^ a b c Foote, H.S. (1888). Santa Clara County, California. Chicago, Illinois: The Lewis Publishing Company. pp. 126–133.
  5. ^ Calhoun, Liz. ""To The Unmounted Lens" from Hand-book of the Lick Observatory". University Lowbrow Astronomers. University of Michigan. Retrieved December 31, 2018.
  6. ^ California Architect and Business News, 9/1881; Lick Observatory Archives.
  7. ^ On the road to Mt. Hamilton, a guide book for the tourist ... San Jose?.
  8. ^ Mount Hamilton (California)
  9. ^ "The Lick Observatory Completed (from San Francisco Alto May 22, 1888)". The New York Times. May 29, 1888. p. 5. ISSN 0362-4331. Sometime this week the Trustees of the James Lick Estate will convey to the Board of Regents of the State University the Mount Hamilton Observatory.
  10. ^ a b Perrine, C. D. (March 30, 1905). "The Seventh Satellite of Jupiter". Publications of the Astronomical Society of the Pacific. 17 (101): 62–63. Bibcode:1905PASP...17...56.. doi:10.1086/121624. JSTOR 40691209.
  11. ^ a b Porter, J.G. (1905). "Discovery of a Sixth Satellite of Jupiter". Astronomical Journal. 24 (18): 154B. Bibcode:1905AJ.....24..154P. doi:10.1086/103612.
  12. ^ a b c "Observing Carbon Stars". Sky & Telescope. May 22, 2018. Retrieved December 11, 2019.
  13. ^ Mayall, Nicholas Ulrich (1970). "Nicholas U. Mayall". In Stone, Irving (ed.). There was light: Autobiography of a university: Berkeley, 1868–1968. Garden City, New York: Doubleday & Company, Inc. pp. 117–8.
  14. ^ "2 Die as Army Plane Hits Lick Observatory, Damaging Offices and Destroying Records". The New York Times (Late City ed.). Associated Press. May 22, 1939. p. 1. ISSN 0362-4331. Lost in thick fog, an army attack plane crashed into Lick Astronomical Observatory of the University of California on Mount Hamilton tonight. Its two occupants were killed. They were Lieut. R. F. Lorenz, 25, of March Field, the pilot, and Private W. E. Scott, a passenger.
  15. ^ Airplane Crash at the Lick Observatory Archived August 27, 2008, at the Wayback Machine
  16. ^ The Lick Observatory A-17A Archived April 22, 2009, at the Wayback Machine
  17. ^ Holden, Edward Singleton (1888). Hand-book of the Lick Observatory of the University of California. University of California Libraries. San Francisco : The Bancroft Company. pp. 99.
  18. ^ UCSC, Lick Observatory designate asteroid for the city of San Jose Archived August 17, 2007, at the Wayback Machine
  19. ^ "Mt. Hamilton Elementary – School Directory Details (CA Dept of Education)". CA Dept of Education. Retrieved October 15, 2015.
  20. ^ Black, Annetta. "Lick Observatory". Atlas Obscura. Retrieved December 31, 2018.
  21. ^ Hoban, Virgie (September 2, 2014). "Facing a Waning Future". The Daily Californian. Berkeley, California. pp. 1+. Retrieved September 4, 2014.
  22. ^ Overbye, Dennis (June 3, 2014). "A Star-Gazing Palace's Hazy Future". New York Times. Retrieved September 4, 2014.
  23. ^ Lebow, Hilary (November 4, 2014). "UC Confirms Continued Support of Lick Observatory". UC Santa Cruz. pp. 1+. Retrieved November 4, 2014.
  24. ^ "Google gives Lick Observatory $1 million – Astronomy Now". Retrieved December 11, 2019.
  25. ^ Alyssa Pereira (August 19, 2020). "The 132-year-old Lick Observatory threatened by SCU Lightning Complex Fire". sfgate.com. Retrieved August 19, 2020.
  26. ^ Lick Observatory (August 19, 2020). "News as of 5pm". Instagram. Archived from the original on December 23, 2021. Retrieved August 19, 2020.
  27. ^ Tim Stephens (August 20, 2020). "UC's Lick Observatory threatened by fire". Retrieved August 20, 2020.
  28. ^ Shankland, Robert S. (1974). "Michelson and his interferometer". Physics Today. 27 (4). American Institute of Physics: 37–43. Bibcode:1974PhT....27d..37S. doi:10.1063/1.3128534.
  29. ^ Proctor, Mary (March 5, 1905). "Jupiter's Newly Discovered Moons and Solar Cyclones" (PDF). The New York Times. New York City. Retrieved October 1, 2014.
  30. ^ Bernard, E. E. (October 4, 1892). "Discovery and Observations of a Fifth Satellite to Jupiter". Astronomical Journal. 12: 81. Bibcode:1892AJ.....12...81B. doi:10.1086/101715.
  31. ^ Nicholson, S. B. (1914). "Discovery of the Ninth Satellite of Jupiter". Publications of the Astronomical Society of the Pacific. 26 (1): 197–198. Bibcode:1914PASP...26..197N. doi:10.1086/122336.
  32. ^ "JPL Small-Body Database Browser: 29075 (1950 DA)" (2018-02-09 last obs.). Jet Propulsion Laboratory. Retrieved July 5, 2018.
  33. ^ Fischer, Debra A.; Marcy, Geoffrey W. (March 1, 2008). "Five Planets Orbiting 55 Cancri". The Astrophysical Journal. 675 (1): 790–801. arXiv:0712.3917. Bibcode:2008ApJ...675..790F. doi:10.1086/525512. S2CID 55779685.
  34. ^ "A Triple-Planet System Orbiting Ups Andromedae". San Francisco State University. Lick Observatory. Retrieved June 23, 2008.
  35. ^ a b Fischer, Debra A.; et al. (2001). "Planetary Companions to HD 12661, HD 92788, and HD 38529 and Variations in Keplerian Residuals of Extrasolar Planets". The Astrophysical Journal. 551 (2): 1107–1118. Bibcode:2001ApJ...551.1107F. doi:10.1086/320224.
  36. ^ Marcy, Geoffrey W.; Butler, R. Paul; et al. (1998). "A Planetary Companion to a Nearby M4 Dwarf, Gliese 876". The Astrophysical Journal. 505 (2): L147 – L149. arXiv:astro-ph/9807307. Bibcode:1998ApJ...505L.147M. doi:10.1086/311623. S2CID 2679107.
  37. ^ Fischer, Debra A.; Marcy, Geoffrey W.; et al. (2002). "A Second Planet Orbiting 47 Ursae Majoris". The Astrophysical Journal. 564 (2): 1028–1034. Bibcode:2002ApJ...564.1028F. doi:10.1086/324336.
  38. ^ Fath, E. A. (1909). "The spectra of some spiral nebulae and globular star clusters". Lick Observatory Bulletin. 149: 71–77. Bibcode:1909LicOB...5...71F. doi:10.5479/ADS/bib/1909LicOB.5.71F. hdl:2027/uc1.c2914873.
  39. ^ Curtis, H. D. (1918). "Descriptions of 762 Nebulae and Clusters Photographed with the Crossley Reflector". Publications of the Lick Observatory. XIII: 9. Bibcode:1918PLicO..13....9C.
  40. ^ Antonucci, R. R. J.; Miller, J. S. (October 15, 1985). "Spectropolarimetry and the Nature of NGC 1068". The Astrophysical Journal. 297: 621–632. Bibcode:1985ApJ...297..621A. doi:10.1086/163559.
  41. ^ "History of Laser Ranging". University of Texas Center for Space Research. Retrieved January 2, 2019.
  42. ^ "Telescopes of the Lick Observatory". University of California Observatories. Archived from the original on December 12, 2018. Retrieved December 31, 2018.

Sources

edit

Further reading

edit
edit