Gauss–Seidel method

(Redirected from Gauss–Seidel)

In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant,[1] or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823.[2] A publication was not delivered before 1874 by Seidel.[3]

Description

edit

Let   be a square system of n linear equations, where:

 

When   and   are known, and   is unknown, the Gauss–Seidel method can be used to iteratively approximate  . The vector   denotes the initial guess for  , often   for  . Denote by   the  -th approximation or iteration of  , and by   the approximation of   at the next (or  -th) iteration.

Matrix-based formula

edit

The solution is obtained iteratively via   where the matrix   is decomposed into a lower triangular component  , and a strictly upper triangular component   such that  .[4] More specifically, the decomposition of   into   and   is given by:

 

Why the matrix-based formula works

edit

The system of linear equations may be rewritten as:

 

The Gauss–Seidel method now solves the left hand side of this expression for  , using the previous value for   on the right hand side. Analytically, this may be written as  

Element-based formula

edit

However, by taking advantage of the triangular form of  , the elements of   can be computed sequentially for each row   using forward substitution:[5]  

Notice that the formula uses two summations per iteration which can be expressed as one summation   that uses the most recently calculated iteration of  . The procedure is generally continued until the changes made by an iteration are below some tolerance, such as a sufficiently small residual.

Discussion

edit

The element-wise formula for the Gauss–Seidel method is related to that of the (iterative) Jacobi method, with an important difference:

In Gauss-Seidel, the computation of   uses the elements of   that have already been computed, and only the elements of   that have not been computed in the  -th iteration. This means that, unlike the Jacobi method, only one storage vector is required as elements can be overwritten as they are computed, which can be advantageous for very large problems.

However, unlike the Jacobi method, the computations for each element are generally much harder to implement in parallel, since they can have a very long critical path, and are thus most feasible for sparse matrices. Furthermore, the values at each iteration are dependent on the order of the original equations.

Gauss-Seidel is the same as successive over-relaxation with  .

Convergence

edit

The convergence properties of the Gauss–Seidel method are dependent on the matrix  . Namely, the procedure is known to converge if either:

The Gauss–Seidel method may converge even if these conditions are not satisfied.

Golub and Van Loan give a theorem for an algorithm that splits   into two parts. Suppose   is nonsingular. Let   be the spectral radius of  . Then the iterates   defined by   converge to   for any starting vector   if   is nonsingular and  .[8]

Algorithm

edit

Since elements can be overwritten as they are computed in this algorithm, only one storage vector is needed, and vector indexing is omitted. The algorithm goes as follows:

algorithm Gauss–Seidel method is
    inputs: A, b
    output: φ

    Choose an initial guess φ to the solution
    repeat until convergence
        for i from 1 until n do
            σ ← 0
            for j from 1 until n do
                if ji then
                    σσ + aijφj
                end if
            end (j-loop)
            φi ← (biσ) / aii
        end (i-loop)
        check if convergence is reached
    end (repeat)

Examples

edit

An example for the matrix version

edit

A linear system shown as   is given by:  

Use the equation   in the form   where:

 

Decompose   into the sum of a lower triangular component   and a strict upper triangular component  :  

The inverse of   is:  

Now find:  

With   and   the vectors   can be obtained iteratively.

First of all, choose  , for example   The closer the guess to the final solution, the fewer iterations the algorithm will need.

Then calculate:  

As expected, the algorithm converges to the solution:  .

In fact, the matrix A is strictly diagonally dominant, but not positive definite.

Another example for the matrix version

edit

Another linear system shown as   is given by:

 

Use the equation   in the form   where:

 

Decompose   into the sum of a lower triangular component   and a strict upper triangular component  :  

The inverse of   is:  

Now find:  

With   and   the vectors   can be obtained iteratively.

First of all, we have to choose  , for example  

Then calculate:  

In a test for convergence we find that the algorithm diverges. In fact, the matrix   is neither diagonally dominant nor positive definite. Then, convergence to the exact solution   is not guaranteed and, in this case, will not occur.

An example for the equation version

edit

Suppose given   equations and a starting point  . At any step in a Gauss-Seidel iteration, solve the first equation for   in terms of  ; then solve the second equation for   in terms of   just found and the remaining  ; and continue to  . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

Consider an example:  

Solving for   and   gives:  

Suppose (0, 0, 0, 0) is the initial approximation, then the first approximate solution is given by:  

Using the approximations obtained, the iterative procedure is repeated until the desired accuracy has been reached. The following are the approximated solutions after four iterations.

       
0.6 2.32727 −0.987273 0.878864
1.03018 2.03694 −1.01446 0.984341
1.00659 2.00356 −1.00253 0.998351
1.00086 2.0003 −1.00031 0.99985

The exact solution of the system is (1, 2, −1, 1).

An example using Python and NumPy

edit

The following iterative procedure produces the solution vector of a linear system of equations:

import numpy as np

ITERATION_LIMIT = 1000

# initialize the matrix
A = np.array(
    [
        [10.0, -1.0, 2.0, 0.0],
        [-1.0, 11.0, -1.0, 3.0],
        [2.0, -1.0, 10.0, -1.0],
        [0.0, 3.0, -1.0, 8.0],
    ]
)
# initialize the RHS vector
b = np.array([6.0, 25.0, -11.0, 15.0])

print("System of equations:")
for i in range(A.shape[0]):
    row = [f"{A[i,j]:3g}*x{j+1}" for j in range(A.shape[1])]
    print("[{0}] = [{1:3g}]".format(" + ".join(row), b[i]))

x = np.zeros_like(b, np.float_)
for it_count in range(1, ITERATION_LIMIT):
    x_new = np.zeros_like(x, dtype=np.float_)
    print(f"Iteration {it_count}: {x}")
    for i in range(A.shape[0]):
        s1 = np.dot(A[i, :i], x_new[:i])
        s2 = np.dot(A[i, i + 1 :], x[i + 1 :])
        x_new[i] = (b[i] - s1 - s2) / A[i, i]
    if np.allclose(x, x_new, rtol=1e-8):
        break
    x = x_new

print(f"Solution: {x}")
error = np.dot(A, x) - b
print(f"Error: {error}")

Produces the output:

System of equations:
[ 10*x1 +  -1*x2 +   2*x3 +   0*x4] = [  6]
[ -1*x1 +  11*x2 +  -1*x3 +   3*x4] = [ 25]
[  2*x1 +  -1*x2 +  10*x3 +  -1*x4] = [-11]
[  0*x1 +   3*x2 +  -1*x3 +   8*x4] = [ 15]
Iteration 1: [ 0.  0.  0.  0.]
Iteration 2: [ 0.6         2.32727273 -0.98727273  0.87886364]
Iteration 3: [ 1.03018182  2.03693802 -1.0144562   0.98434122]
Iteration 4: [ 1.00658504  2.00355502 -1.00252738  0.99835095]
Iteration 5: [ 1.00086098  2.00029825 -1.00030728  0.99984975]
Iteration 6: [ 1.00009128  2.00002134 -1.00003115  0.9999881 ]
Iteration 7: [ 1.00000836  2.00000117 -1.00000275  0.99999922]
Iteration 8: [ 1.00000067  2.00000002 -1.00000021  0.99999996]
Iteration 9: [ 1.00000004  1.99999999 -1.00000001  1.        ]
Iteration 10: [ 1.  2. -1.  1.]
Solution: [ 1.  2. -1.  1.]
Error: [  2.06480930e-08  -1.25551054e-08   3.61417563e-11   0.00000000e+00]

Program to solve arbitrary number of equations using Matlab

edit

The following code uses the formula  

function x = gauss_seidel(A, b, x, iters)
    for i = 1:iters
        for j = 1:size(A,1)
            x(j) = (b(j) - sum(A(j,:)'.*x) + A(j,j)*x(j)) / A(j,j);
        end
    end
end

See also

edit

Notes

edit
  1. ^ Sauer, Timothy (2006). Numerical Analysis (2nd ed.). Pearson Education, Inc. p. 109. ISBN 978-0-321-78367-7.
  2. ^ Gauss 1903, p. 279; direct link.
  3. ^ Seidel, Ludwig (1874). "Über ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive Annäherung aufzulösen" [On a process for solving by successive approximation the equations to which the method of least squares leads as well as linear equations generally]. Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften (in German). 11 (3): 81–108.
  4. ^ Golub & Van Loan 1996, p. 511.
  5. ^ Golub & Van Loan 1996, eqn (10.1.3)
  6. ^ Golub & Van Loan 1996, Thm 10.1.2.
  7. ^ Bagnara, Roberto (March 1995). "A Unified Proof for the Convergence of Jacobi and Gauss-Seidel Methods". SIAM Review. 37 (1): 93–97. CiteSeerX 10.1.1.26.5207. doi:10.1137/1037008. JSTOR 2132758.
  8. ^ Golub & Van Loan 1996, Thm 10.1.2

References

edit

This article incorporates text from the article Gauss-Seidel_method on CFD-Wiki that is under the GFDL license.


edit