File:Spectral density of Wishart-Laguerre ensemble (8, 15).png

Original file (1,325 × 724 pixels, file size: 86 KB, MIME type: image/png)

Summary

Description
English: A reconstruction of Figure 1 of Moments of Wishart-Laguerre and Jacobi ensembles of random matrices (Livan 2011)

https://arxiv.org/pdf/1103.2638.pdf

```python import numpy as np import matplotlib.pyplot as plt

  1. 1 for LOE, 2 for LUE, 4 for LSE

betas = 1, 2, 4 NMs = [(8, 15)]

  1. Choose number of samples

Nmatr = 100000 Es = {} for n, m in NMs:

   for beta in betas:
       if beta == 1:  # Wishart Orthogonal Ensemble
           X = np.random.randn(Nmatr, n, m)
           M = np.einsum('ijk,ilk->ijl', X, X)
           E = np.linalg.eigvals(M.reshape(Nmatr, n, n)).flatten()
       elif beta == 2:  # Wishart Unitary Ensemble
           X_real = np.random.randn(Nmatr, n, m)
           X_imag = np.random.randn(Nmatr, n, m)
           X = X_real + 1j * X_imag
           M = np.einsum('ijk,ilk->ijl', X, X.conjugate())
           E = np.linalg.eigvals(M.reshape(Nmatr, n, n)).flatten()
       elif beta == 4:  # Wishart Symplectic Ensemble
           A = np.random.randn(Nmatr, n,m) + 1j * np.random.randn(Nmatr, n,m)
           B = np.random.randn(Nmatr, n,m) + 1j * np.random.randn(Nmatr, n,m)
           X = np.block([[A, B],[-np.conj(B), np.conj(A)]])
           M = np.einsum('ijk,ilk->ijl', X, X.conjugate())
           E = np.linalg.eigvals(M.reshape(Nmatr, 2 * n, 2 * n)).flatten()
       Es[(n, m, beta)] = E

for n, m in NMs:

   plt.figure(figsize=(16, 8))
   legends = {1: "LOE", 2:"LUE", 4:"LSE"}
   colors={1:"blue", 2:"red", 4:"green"}
   for beta in betas:
       color=colors[beta]
       E = Es[(n, m, beta)]
       xs = np.real(E) / np.sqrt(beta)
       bin_heights, bin_borders, _ = plt.hist(xs, bins=500, density=True, color=color, alpha=0.1)
       bin_centers = bin_borders[:-1] + np.diff(bin_borders) / 2
       # Compute sliding window average
       window_size = 5
       window = np.ones(window_size) / window_size
       smoothed_heights = np.convolve(bin_heights, window, mode='same')
       # Plot sliding window average
       plt.plot(bin_centers, smoothed_heights, label=legends[beta], color=color)
   # Add plot labels and title
   plt.xlabel('x', fontsize=14)
   plt.ylabel('ρ(x)', fontsize=14)
   plt.title(r'Eigenvalues $/\sqrtTemplate:\beta$, with (N, M) = {}'.format((n, m)), fontsize=18)
   plt.grid(True)
   plt.legend()
   plt.show()
```
Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

17 May 2023

image/png

88,381 byte

724 pixel

1,325 pixel

f51c829896633d2670bc2911271830a88f48ba84

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current10:50, 17 May 2023Thumbnail for version as of 10:50, 17 May 20231,325 × 724 (86 KB)Cosmia NebulaUploaded while editing "Wishart distribution" on en.wiki.x.io

The following page uses this file:

Metadata