Amoxicillin/clavulanic acid

(Redirected from Co-amoxiclav)

Amoxicillin/clavulanic acid, also known as co-amoxiclav or amox-clav, sold under the brand name Augmentin, among others, is an antibiotic medication used for the treatment of a number of bacterial infections.[5] It is a combination consisting of amoxicillin, a β-lactam antibiotic, and potassium clavulanate, a β-lactamase inhibitor.[5] It is specifically used for otitis media, streptococcal pharyngitis, pneumonia, cellulitis, urinary tract infections, and animal bites.[5] It is taken by mouth or by injection into a vein.[2]

Amoxicillin/clavulanic acid
Combination of
AmoxicillinPenicillin antibiotic
Clavulanic acidBeta-lactamase inhibitor
Clinical data
Trade namesAugmentin, Clavulin, Amoclan, others[1]
Other namesCo-amoxiclav; Amox-clav
AHFS/Drugs.comMonograph
MedlinePlusa685024
License data
Pregnancy
category
  • AU: B1
Routes of
administration
By mouth, intravenous[2]
ATC code
Legal status
Legal status
Identifiers
CAS Number
PubChem CID
ChemSpider
KEGG
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC24H27KN4O10S
Molar mass602.66 g·mol−1
3D model (JSmol)
  • CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C.C1C2N(C1=O)C(C(=CCO)O2)C(=O)[O-].[K+]
  • InChI=DWHGNUUWCJZQHO-ZVDZYBSKSA-M
  • Key:1S/C16H19N3O5S.C8H9NO5.K/c1-16(2)11(15(23)24)19-13(22)10(14(19)25-16)18-12(21)9(17)7-3-5-8(20)6-4-7;10-2-1-4-7(8(12)13)9-5(11)3-6(9)14-4;/h3-6,9-11,14,20H,17H2,1-2H3,(H,18,21)(H,23,24);1,6-7,10H,2-3H2,(H,12,13);/q;;+1/p-1/b;4-1-;/t9-,10-,11+,14-;6-,7-;/m11./s1
 ☒NcheckY (what is this?)  (verify)

Common side effects include diarrhea, vomiting, and allergic reactions.[5] It also increases the risk of yeast infections, headaches, and blood clotting problems.[2][6] It is not recommended in people with a history of a penicillin allergy.[2] It is relatively safe for use during pregnancy.[5]

Amoxicillin/clavulanic acid was approved for medical use in the United States in 1984.[5] It is on the World Health Organization's List of Essential Medicines.[7][8] The World Health Organization classifies amoxicillin/clavulanic-acid as critically important for human medicine.[9] It is available as a generic medication.[5] In 2022, it was the 96th most commonly prescribed medication in the United States, with more than 6 million prescriptions.[10][11]

Medical uses

edit

Amoxicillin/clavulanic acid is widely used to treat or prevent many infections caused by susceptible bacteria, such as:

Urinary tract infections

edit

Amoxicillin/clavulanic acid is a second-line therapy in the treatment of uncomplicated urinary tract infections (UTIs).[14][15] It is active against UTIs caused by Staphylococcus saprophyticus, Enterococci (e.g., Enterococcus faecalis), Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis.[15] It is a definitive treatment against susceptible extended-spectrum β-lactamase (ESBL)-producing Gram-negative bacteria.[15] The drug is not effective against Pseudomonas aeruginosa, Morganella morganii, or Providencia stuartii, nor against AmpC β-lactamase- and ESBL-producing Gram-negative bacteria or carbapenem-resistant Enterobacteriaceae (CRE).[15] It is not recommended in the empiric treatment of acute pyelonephritis or hospital-acquired UTIs.[15]

As determined by a 2014 literature review of antibiotics for UTIs, respective early clinical cure and early bacterial cure rates were 91% and 91% for trimethoprim/sulfamethoxazole, 92% and 87% for nitrofurantoin, 91% and 83% for fosfomycin, 90% and 91% for fluoroquinolones (ciprofloxacin and norfloxacin), and 86% and 81% for β-lactams (amoxicillin/clavulanic acid and cefpodoxime).[14] In a large high-quality randomized controlled trial of amoxicillin/clavulanic acid for UTI in 370 women, early and late clinical cure rates were 79% and 58%, respectively.[14] Amoxicillin/clavulanic acid reaches a relatively low urine concentration, which might be involved in its lower effectiveness than other antibiotics.[15]

Amoxicillin/clavulanic acid is less effective in the treatment of UTI than first-line therapies used to treat UTIs.[14][16] A 2012 network meta-analysis of antibiotics for uncomplicated UTIs found that it was less effective than all other assessed agents, including trimethoprim/sulfamethoxazole, nitrofurantoin, fosfomycin, fluoroquinolones (ciprofloxacin, norfloxacin, and gatifloxacin), and pivmecillinam.[16] However, selection of an empirical antibiotic should be based on local or regional susceptibility data.[15] Additionally, selection of the most appropriate and narrowest effective antibiotic is recommended to help limit increased antibiotic resistance to broad-spectrum antibiotics.[15]

Combining amoxicillin/clavulanic acid with aztreonam can further enhance its activity against certain resistant UTI-causing bacteria.[15]

Tuberculosis

edit

It is also used for tuberculosis that is resistant to other treatments.[5] The World Health Organization recommends giving amoxicillin-clavulanate along with meropenem as one of the therapeutic options in drug-resistant tuberculosis.[17] However, across the spectrum of dosage of amoxicillin-clavulanate combination, the dose of clavulanate is constant at 125 mg, whereas the dose of amoxicillin varies at 250 mg, 500 mg and 875 mg. Thus the use of low-dose amoxicillin-clavulanate in combination with meropenem may be used in part of a treatment regimen for drug-resistant TB and this has been demonstrated in a clinical setting also. Its efficacy is attributed not to the amoxicillin component, but to the protective action of clavulanic acid over meropenem against beta-lactamase produced by the mycobacteria. Therefore, the minimum dosage of amoxicillin (250 mg) is recommended.[18]

Adverse effects

edit

Possible side effects include diarrhea, vomiting, nausea, thrush, and skin rash. These do not usually require medical attention. As with all antimicrobial agents, antibiotic-associated diarrhea due to Clostridioides difficile infection—sometimes leading to pseudomembranous colitis—may occur during or after treatment with amoxicillin/clavulanic acid.[13]

Rarely, cholestatic jaundice (also referred to as cholestatic hepatitis, a form of liver toxicity) has been associated with amoxicillin/clavulanic acid. The reaction may occur up to several weeks after treatment has stopped and usually takes weeks to resolve. It is more frequent in men, older people, and those who have taken long courses of treatment; the estimated overall incidence is one in 100,000 exposures.[13] In the United Kingdom, co-amoxiclav carries a warning from the Committee on Safety of Medicines to this effect.[12]

As all aminopenicillins, amoxicillin has been associated with Stevens–Johnson syndrome / toxic epidermal necrolysis, although these reactions are very rare.[13][19]

Pharmacology

edit

Amoxicillin is an antibiotic while clavulanic acid is a non-antibiotic β-lactamase inhibitor which prevents metabolism of amoxicillin by certain bacteria.

In addition to its β-lactamase inhibition, clavulanic acid shows central nervous system actions and effects and has been studied in the potential treatment of various psychiatric and neurological disorders.[20][21][22][23][24]

History

edit

British scientists working at Beecham (now part of GlaxoSmithKline), filed for patent protection for the drug combination in 1977, which was granted in 1982.[25]

It was sold under the brand name Augmentin.[12][26]

Preparations

edit

Amoxicillin/clavulanic acid is the International Nonproprietary Name (INN) and co-amoxiclav is the British Approved Name (BAN).[citation needed]

Many branded products indicate their strengths as the quantity of amoxicillin. Augmentin 250, for example, contains 250 mg of amoxicillin and 125 mg of clavulanic acid.[12][27]

An intravenous preparation has been available in the UK since 1985,[28] but no parenteral preparation is available in the US;[citation needed] the nearest equivalent is ampicillin/sulbactam.[citation needed]

Suspensions of amoxicillin/clavulanic acid are available for use in children. They must be refrigerated to maintain effectiveness.[citation needed]

Veterinary use

edit

Amoxicillin/clavulanic acid is used in numerous animals for a variety of conditions:

  • Dogs: Skin and soft tissue infections such as wounds, abscesses, cellulitis, superficial/juvenile and deep pyoderma due to susceptible strains of the following organisms: β-lactamase-producing Staphylococcus aureus, non-β-lactamase-producing Staphylococcus aureus, Staphylococcus spp., Streptococcus spp., and E. coli; and periodontal infections due to susceptible strains of both aerobic and anaerobic bacteria.[29]
  • Cats: Skin and soft tissue infections such as wounds, abscesses, and cellulitis/dermatitis due to susceptible strains of the following organisms: β-lactamase-producing Staphylococcus aureus, non-β-lactamase-producing Staphylococcus aureus, Staphylococcus spp., Streptococcus spp., E. coli, and Pasteurella spp; urinary tract infections (cystitis) due to susceptible strains of E. coli.[29]

Bacterial resistance

edit

Bacterial antibiotic resistance is a growing problem in veterinary medicine. Amoxicillin/clavulanic acid is reported to be effective against clinical Klebsiella infections, but is not efficacious against Pseudomonas infections.[30]

References

edit
  1. ^ Hamilton R (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 97. ISBN 9781284057560.
  2. ^ a b c d World Health Organization (2009). Stuart MC, Kouimtzi M, Hill SR (eds.). WHO Model Formulary 2008. World Health Organization. p. 102. hdl:10665/44053. ISBN 9789241547659.
  3. ^ "Prescription medicines: registration of new generic medicines and biosimilar medicines, 2017". Therapeutic Goods Administration (TGA). 21 June 2022. Archived from the original on 6 July 2023. Retrieved 30 March 2024.
  4. ^ "Regulatory Decision Summary - Amoxicillin Sodium And Potassium Clavulanate For Injection". Health Canada. 23 October 2014. Archived from the original on 5 June 2022. Retrieved 4 June 2022.
  5. ^ a b c d e f g h "Amoxicillin and Clavulanate Potassium". The American Society of Health-System Pharmacists. Archived from the original on 29 November 2016. Retrieved 8 December 2016.
  6. ^ Gillies M, Ranakusuma A, Hoffmann T, Thorning S, McGuire T, Glasziou P, et al. (January 2015). "Common harms from amoxicillin: a systematic review and meta-analysis of randomized placebo-controlled trials for any indication". CMAJ. 187 (1): E21–E31. doi:10.1503/cmaj.140848. PMC 4284189. PMID 25404399.
  7. ^ World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  8. ^ World Health Organization (2021). World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization. hdl:10665/345533. WHO/MHP/HPS/EML/2021.02.
  9. ^ World Health Organization (2019). Critically important antimicrobials for human medicine (6th revision ed.). Geneva: World Health Organization. hdl:10665/312266. ISBN 9789241515528.
  10. ^ "The Top 300 of 2022". ClinCalc. Archived from the original on 30 August 2024. Retrieved 30 August 2024.
  11. ^ "Amoxicillin; Clavulanate Drug Usage Statistics, United States, 2013 - 2022". ClinCalc. Retrieved 30 August 2024.
  12. ^ a b c d British National Formulary (57th ed.). March 2009.
  13. ^ a b c d Gordon D (2010). "Amoxicillin–Clavulanic Acid (Co-Amoxiclav)". In Grayson ML, et al. (eds.). Kucers' the Use of Antibiotics: a Clinical Review of Antibacterial, Antifungal, Antiparasitic and Antiviral Drugs. London: Hodder Arnold/ASM Press. pp. 193–4. ISBN 978-0-340-92767-0.
  14. ^ a b c d Grigoryan L, Trautner BW, Gupta K (2014). "Diagnosis and management of urinary tract infections in the outpatient setting: a review". JAMA. 312 (16): 1677–1684. doi:10.1001/jama.2014.12842. PMID 25335150.
  15. ^ a b c d e f g h i Bader MS, Loeb M, Leto D, Brooks AA (April 2020). "Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents". Postgrad Med. 132 (3): 234–250. doi:10.1080/00325481.2019.1680052. PMID 31608743.
  16. ^ a b Knottnerus BJ, Grigoryan L, Geerlings SE, Moll van Charante EP, Verheij TJ, Kessels AG, et al. (December 2012). "Comparative effectiveness of antibiotics for uncomplicated urinary tract infections: network meta-analysis of randomized trials". Fam Pract. 29 (6): 659–670. doi:10.1093/fampra/cms029. PMID 22516128.
  17. ^ World Health Organization (2016). WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. World Health Organization. hdl:10665/250125. ISBN 9789241549639.
  18. ^ Mishra G, Caminero J (2018). "First Successful Use of Low Dose Amoxicillin-Clavulanic Acid in Management of Drug Resistant Tuberculosis". Journal of Clinical and Diagnostic Research. 12 (10): OD08–OD10. doi:10.7860/JCDR/2018/37279.12145. Archived from the original on 7 May 2021. Retrieved 7 May 2021.
  19. ^ Harr T, French LE (December 2010). "Toxic epidermal necrolysis and Stevens-Johnson syndrome". Orphanet Journal of Rare Diseases. 5: 39. doi:10.1186/1750-1172-5-39. PMC 3018455. PMID 21162721.
  20. ^ Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, et al. (January 2024). "Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System". Arch Med Res. 55 (1): 102916. doi:10.1016/j.arcmed.2023.102916. PMID 38039802.
  21. ^ Ochoa-Aguilar A, Ventura-Martinez R, Sotomayor-Sobrino MA, Gómez C, Morales-Espinoza MR (2016). "Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules". Anti-Inflamm Anti-Allergy Agents Med Chem. 15 (1): 3–14. doi:10.2174/1871523015666160517114027. PMID 27185396.
  22. ^ Milenkovic U, Campbell J, Roussel E, Albersen M (December 2018). "An update on emerging drugs for the treatment of erectile dysfunction". Expert Opin Emerg Drugs. 23 (4): 319–330. doi:10.1080/14728214.2018.1552938. PMID 30507329.
  23. ^ Connolly KR, Thase ME (March 2012). "Emerging drugs for major depressive disorder". Expert Opin Emerg Drugs. 17 (1): 105–126. doi:10.1517/14728214.2012.660146. PMID 22339643.
  24. ^ "Clavulanic acid". AdisInsight. 29 December 2021. Retrieved 27 September 2024.
  25. ^ GB 2005538, Crowley PJ, "Pharmaceutical compositsions", published 1982-05-26, assigned to Beecham Group Ltd. 
  26. ^ Bryan J (23 June 2011). "Still going strong at 30: co-amoxiclav". The Pharmaceutical Journal. 286: 762. Archived from the original on 22 August 2017. Retrieved 20 December 2020.
  27. ^ "Augmentin -- Prescribing Information" (PDF). December 2006. Archived (PDF) from the original on 20 December 2013.
  28. ^ Davies BE, Boon R, Horton R, Reubi FC, Descoeudres CE (October 1988). "Pharmacokinetics of amoxycillin and clavulanic acid in haemodialysis patients following intravenous administration of Augmentin". British Journal of Clinical Pharmacology. 26 (4): 385–390. doi:10.1111/j.1365-2125.1988.tb03395.x. PMC 1386558. PMID 3190988.
  29. ^ a b "Recent Animal Drug Approvals". U.S. Food and Drug Administration. 15 March 2024. Archived from the original on 5 April 2024. Retrieved 5 April 2024.   This article incorporates text from this source, which is in the public domain.
  30. ^ Federation of Veterinarians in Europe Position Paper: "Antibiotic Resistance & Prudent Use of Antibiotics in Veterinary Medicine"